Applying Process Analysis to the Italian
eGovernment Enterprise Architecture*

Roberto Bruni', Andrea Corradini®, Gianluigi Ferrari!, Tito Flagella?,
Roberto Guanciale!, and Giorgio Spagnolo!

! Dipartimento di Informatica, Universita di Pisa, Italy
2 Link.it, Pisa, Italy

Abstract. We report our experiences gained when integrating process
analysis activities into a regional gateway of the Italian eGov platform to
promote real-time process monitoring within a Service Oriented Archi-
tecture. We exploit ProM, a state-of-the-art suite providing several anal-
ysis algorithms for business processes. First, we outline our technological
integration efforts, focusing on the architectural changes and implemen-
tation strategies to make ProM tools available at runtime for monitoring
the gateway. Next we improve an existing performance algorithm with a
new approach to deal with invisible transitions when evaluating the syn-
chronization times of complex nets. Finally, we introduce a methodology
to transform high level process notations, like BPMN, to Petri Nets in
order to enable the analysis techniques and convey back their results.

1 Introduction

In 2003 the CNIPA (National Center for IT in Public Administration, now Dig-
itPA) began the specification of an Enterprise Architecture for ensuring interop-
erability among the software applications of the Italian Public Administrations.
The resulting architecture is called SPCoop (Public Cooperative System) and it
is based on a Service Oriented Architecture model. It was designed for standard-
izing both the service agreements (contracts) between applications of different
domains and the communication protocol used for application interoperability:
the former contain both formal (XSD, WSDL, ...) and semiformal documen-
tation concerning service interoperability details; the latter is an extension of
the SOAP 1.1 envelope, called e-Gov Envelop which consists of a custom SOAP
header carrying various message addressing information.

According to the SPCoop specification, every Public Administration must
offer its application services through a unique entity named Porta di Dominio
(Domain Gateway), which also acts as a proxy for invocations of remote ser-
vices. Thus the Domain Gateway interoperates with gateways of other domains
for accepting or delivering messages to and from application services. Domain
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Fig. 1: Business Transactions Logging in SPCoop

Gateways act according to service agreements recorded in a central registry
named SICA (Interoperability and Application Cooperation Service Registry).

After some years of experimentation, on February 2005 the Italian Govern-
ment issued the Law Decree n. 42 [15] which establishes the conceptual architec-
ture and the technical and governance rules of SPCoop, giving in this way legal
value to interactions among SOA applications built over the standard. We refer
to [5] for a comprehensive description of the SPCoop architecture.

In 2005 Link.it, a spin-off of the Computer Science Department in Pisa,
started an open-source project, named OpenSPCoop [10], having the goal of
implementing all the infrastructural components required by the SPCoop ar-
chitecture. Among them, the Domain Gateway and the Service Registry. The
software developed within the project quickly became the reference SPCoop im-
plementation and is widely adopted in the main national eGov projects. More
details about OpenSPCoop can be found, in Italian, in [7].

As well explained in [5], one of the hardest challenges in the SPCoop archi-
tecture is to define metrics for measuring the service level agreements (SLAs)
and to design a system for monitoring the SLAs. In fact SPCoop can host po-
tentially thousands of service providers, each having potentially different SLAs
for each client, even for the same service. Nevertheless, as a consequence of the
availability of a standard product managing all eGov business transactions, a
uniform repository of all service transaction logs is available in organizations
adopting SPCoop, as shown in Fig. la. The case of geographical federations of
Public Organizations, e.g. Regional Entities, is particularly interesting. In this
case, SPCoop requires to have a centralized regional gateway, logging both intra-
regional and inter-regional application communications, as shown in Fig. 1b.

This scenario makes it possible and extremely interesting enabling business
process analysis on a Domain Gateway as a mean to monitor SLAs. In this paper
we report about the current activities aimed at extending the OpenSPCoop
platform with monitoring functionalities based on the exploitation of system’s
logs for the performance and conformance analysis of business process models.



After introducing the main concepts concerning Business Process Manage-
ment in Section 2, in Section 3 we present the Monitoring Framework designed
to extend OpenSPCoop. In particular we describe how the ProM framework [9]
has been integrated in the platform in order to exploit some of its analysis al-
gorithms. In Section 4 we discuss the analysis algorithms currently available in
the platform, and in Section 5 we present the ongoing activity aimed at provid-
ing automated support to the translation of BPMN model into Petri nets, and
to read back the analysis results on the original BPMN model. We assume the
readers have some familiarity with Petri nets’ basics and notation.

2 Business Process Management

Business Process Management (BPM) is a young discipline related to the under-
standing, design, organization, enactment and improvement of the tasks to be
performed to carry out some specific goal. BPM calls for a paradigm shift, from
the data-centered to the process-centered view. The idea is to develop suitable
artifacts, called process representations, that can be used to coordinate a generic
software system that enacts the business process. As the process representation
must be agreed upon by different stakeholders, ranging from the business domain
expert and knowledge workers to the system architect and developers, graphi-
cal (workflow-like) languages are the best suited candidates. Over the years,
several notations have been proposed to the purpose, often pushed by large in-
dustrial consortia, supported by various platforms and integrated in mainstream
development environments. Some successful examples are Event-driven Process
Chains (EPC) [2], the Business Process Execution Language (BPEL) [13] and the
Business Process Modeling Notation (BPMN) [14], which has recently become
a widely adopted standard. There are three main categories of flow objects in
BPMN: 1) events denote something that happens during the course of a business
process; 2) activities denote units of work to be accomplished during the course
of a business process; 3) gateways denote the splitting and joining of workflow
paths. Events are represented as circles, activities as rounded boxes and gate-
ways as diamond shapes. Different kinds of decorations are introduced to clarify
the nature of the flow object. For example, there can be start, intermediate and
end events and different symbols are used for them.

Albeit the syntax of process notations is always defined very precisely, e.g. as
XML schemes, their semantics is often described only verbally. Inevitably, any
formal analysis for business processes must go through a rigorous semantics and
in the recent literature several models have been used to address the issue (e.g.
m-calculus [11], ASM [6], Petri nets [16] and in particular workflow nets [1]).

In this paper, we exploit Petri nets as underlying formal support to analyze
process representations. We argue that Petri nets are a convenient solution,
because several tools are available for their analysis, and their graphical notation
can serve to report the outcome of the analysis in a form that is relatively close
to the original artifact. Roughly, BPMN events are encoded as places, tasks as
transitions and gateways as net fragments involving both places and transitions.
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Fig. 2: The OpenSPCoop Business Process Monitoring Framework

Hereafter, we will focus the formalization on the so called evaluation phase,
i.e. the business activity monitoring phase, that can provide relevant feedback
about the effectiveness of the business process after deployment. The runtime
data to be evaluated are provided by the middleware in terms of system events,
that are collected in log files. Typical questions to be addressed are the con-
formance checking and the performance evaluation. The conformance checking
allows one to spot the discrepancies between the planned process and its real-
ization. The main technique used for conformance checking is the so-called log
replay (see Section 4). The performance evaluation, instead, computes quantita-
tive values allowing us to measure the deployed process. For example, timestamps
can be used to calculate important parameters (latency, synchronization time)
for dimensioning e.g. message buffers.

From a methodological perspective, to enable these analysis it must be the
case that: 1) a formal model of the process is available; 2) all relevant activities
are logged, 3) activities in the log must be correlated if they belong to the same
instance of the process, or kept separated if they belong to different instances
(or to different processes), 4) activities in the log are temporally ordered, e.g.
using timestamps. It is quite common that for each activity, the beginning and
the end are registered separately in the log, with different timestamps.

3 The Process Monitoring platform

In order to equip the Italian eGovernment Enterprise Architecture with a busi-
ness process monitoring system, we extended the architecture of OpenSPCoop
as shown in Fig. 2. The Domain Gateway (1) is the existing software infrastruc-
ture intercepting all communications from and to a Public Administration. In
perspective, the idea is to instantiate the framework to a Regional Gateway, in
order to exploit the centralized logging at regional level: preliminary experimen-
tation are carried on within a project funded by Regione Toscana and are likely
to be extended to other Italian regions.

As mentioned in Section 2, in order to enable process analysis techniques,
audit logs must be grouped into traces in the log repository (2), each of them



representing a unique process instance. To this aim, the Domain Gateway has
been enriched with XPath support: a database (3) is used to configure the XPath
expressions that have to be evaluated by the Domain Gateway on the intercepted
messages in order to extract the information required to identify the proper
business process instance. The Correlation Engine (4) is responsible to structure
the Domain Gateway logs and to group isolated events into process instances.
The configuration database stores the correlation sets required to link the XPath
expressions extracted by the domain gateway. Decoupling the Domain Gateway
and the Correlation Engine allows us to reconstruct the process instances with
minimal effect on the message throughput.

The Analysis Engine (5) is responsible for loading the traces from the log
database, applying the analysis algorithms to them, and recording their results.
Driven by the application domain, we started focusing on two kinds of analysis,
namely conformance and performance analysis of log traces representing process
instances with respect to the process model formalized as a Petri net.

As described below, the Analysis Engine exploits algorithms that are exe-
cuted in ProM [9]. This is an extensible, integrated framework that supports a
wide variety of process mining and analysis techniques in the form of plug-ins.
We adopted Version 6 of ProM because its well-structured and modular architec-
ture, featuring a careful separation between analysis algorithms and graphical
user interface, simplified the task of integrating it into the Analysis Engine.
On the negative side, not all plug-ins of the previous major version, ProM 5.2,
have been ported (yet) to ProM 6. For example, a ProM 6 plug-in is already
available [12] to handle the conformance analysis, but there was no plug-in to
evaluate the performance of Petri Nets. Therefore we implemented a new ProM 6
plug-in for performance analysis taking inspiration from the techniques adopted
in ProM 5.2 but, as explained in the next section, with a different handling of
the “invisible transitions”.

The log database can be used by external components to retrieve execution
traces and the corresponding analysis results, enabling the framework to further
extensions including user interface components (6) that graphically represent
the results (e.g. a standalone GUI, or a web-based monitoring console) and
supervisor components (7) that trigger computations whenever some constraints
are violated (e.g. alert the system administrator if a process does not respect
a SLA or performs unexpected execution). The whole system is equipped with
an administration GUT (8) that manages the configuration database including
XPath expressions and correlation sets, as well as the formal business process
representation in the form of Petri nets or more abstract formalisms like BPMN.

4 Formal Analysis based on Petri nets

The current version of the Analysis Engine of the OpenSPCoop monitoring plat-
form supports conformance and performance analysis of the logs against a model
of the business process represented as a Petri net.
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Fig. 3: Two Petri nets with concurrent branches

The basic building blocks of logs are events. An event e can be seen abstractly
as a pair e = (a,t) representing an action a recorded by the Domain Gateway
and the corresponding timestamp ¢. In the following we denote by «(e) and 0(e)
the action and timestamp of e, respectively. Events that belong to the same
process instance are grouped into traces. Formally, a trace T is a finite sequence
of events T[1],...,T[n] such that 8(T[i]) < O(T[i + 1]) for all ¢ € [1,n). A log L
is a set of traces, recording the activity performed by a system during a finite
number of process executions. We assume here that all traces are instances of
the same process and that for each action there exists a corresponding transition
in the net, that for simplicity will be denoted with the same name of the action.

The key algorithm exploited to analyze the Petri net model with respect to
the log is the log replay algorithm [17]. For each trace in the log, the log replay
starts by placing one token in the start place of the net. For each event in the
trace the corresponding transition is fired in a non-blocking way, and the marking
of the net is updated. “Non-blocking replay” means that if the log replay requires
to fire a transition that is not enabled, the missing tokens are artificially created.

In general, there could exist transitions of the Petri net that are not associated
with any logged action: such transitions are called invisible. This can happen in
several cases: for example, the transition models an internal choice that is not
visible in the system, or it is used to implement a connector of a more abstract
modeling language (as we shall see later for BPMN). Usually, invisible transitions
are considered to be lazy [4], i.e., when firing a visible transition ¢ corresponding
to an event of the trace, only then the invisible transitions enabling ¢ are fired.
For example, considering the net in Fig. 3b, if the log does not contain actions
corresponding to transition ¢1 then it is handled as invisible, and its firing is
delayed until an action corresponding to D is found in the trace. Further details
on the log replay algorithm can be found in [17].

The output of the log replay of a trace T' can be represented as an ordered
list R of pairs (tr, i), representing that the transition ¢r has been fired to mimic
the event T'[i]. Note that the presence of invisible transitions can result in sev-
eral transitions fired to mimic a single event. In presence of recursion several
occurrences of the same transition are also possible.

The result of the log replay can be used to evaluate conformance and per-
formance of the Petri net model. Conformance problems can be discovered by
analyzing the tokens that have been artificially created (the missing tokens) and
the tokens that were not consumed (the remaining tokens). For example, let us



consider the net in Fig. 3a and the traces T = [(4,t1), (B, t2), (C,t3), (D, t4)],
T =[(A,t1)] and T” = [(B, t1)]. Trace T is compliant with the net: the log re-
play does not identify any missing token, terminates with a marking containing
one token in the end place, and returns the sequence [(A4, 1), (B, 2), (C, 3), (D, 4)].
The log replay for 7' does not produce any missing token but the remaining to-
kens are {p0 — 1,p2 — 1}: the trace is a partial execution and B and C should
be executed to continue the process. The log replay for T terminates with a
missing token {p0 — 1} and remaining tokens {start — 1,pl — 1}: the action
A was skipped by the execution.

Since the logs contain timestamps, the log replay can be used to compute
performance measures of the system [3]. The idea is to calculate the time interval
between production and consumption of tokens in each place. This technique can
be applied only to traces that do not require the production of missing tokens,
because such tokens cannot have time information. During the log replay the
following metrics can be computed for catch trace and each place:

— sojourn time (): the time interval between arrival and departure of a token;

— synchronization time (X): the time interval between arrival of a token in the
place and enabling of a transition in the post-set of the place;

— waiting time (X): the time interval between enabling of a transition in the
post-set of the place and token departure (thus X + x = ).

To clarify the metrics evaluated by this technique we exploit the Petri net
depicted in Fig. 3a and the traces in Table 1a. The net starts with the transition
A, concurrently fires B and C' and terminates after the transition D. When
applying the log replay to trace T; we cannot associate performance metrics to
the starting place, since the trace does not carry information about the start
time of the process. The first event in the trace records the firing of transition
A at time 1s, thus tokens arrive at p0 and p2 at time 1s. Since both p0 and p2
have an enabled transition at time 1s, their synchronization times are x(p0) =
X (p2) = 0s. The next event of the trace is (B, 2s): the token in p0 is consumed
and a token is produced in pl. The sojourn time of p0 is then evaluated as
1 (p0) = 2s — 1s = 1s. The log replay continues with the third event recorded:
the firing of C at time 4s. The token in p2 is consumed and a new token is
produced in p3. The sojourn time of p2 is evaluated as > (p2) = 4s — 1s = 3s.
Notice that now (4s) transition D is enabled and thus the synchronization times
of its preset are X (pl) = 4s—2s = 2s and x (p3) = 4s—4s = 0s. While processing
the last recorded event (D, 8) the log replay consumes the tokens in pl and p3,
and their sojourn times are > (pl) = 8s — 2s = 6s and 1 (p3) = 8s — 4s = 4s.

Table 1b reports performance details for three traces and their averages. In
this example x(pl) is usually greater than x(p3), namely, transition B is fired
almost always before C. Moreover, the transition that waits more time to be
fired after its activation is D.

We extend the previous example to stress the role of invisible transitions,
referring to the net of Fig. 3b. Handling invisible transitions as lazy, the log
replay for trace T} yields the sequence [(4,1), (B, 2), (C,3), (t1,4), (D, 4)]. Notice
that, even if transition ¢1 is enabled after the event 77[2], it is delayed until its
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Table 1: Traces and performance results with different evaluation methods

activation is required by the visible transition D. Evaluating performance of this
Petri net using this approach yields the results in Table 1c. Notice that both pl
and p4 have no synchronization time and that the synchronization time of p3 is
greater than zero even when C' is fired after B: in our opinion these measures
do not interpret faithfully the process instance.

A slightly different strategy (used in ProM 5.2) generates the same sequence
of transitions, but instead of associating the invisible transition with the trig-
gering event, it uses the last replayed event. Thus for trace 77 the sequence
[(A4,1),(B,2),(C,3),(t1,3),(D,4)] is returned, and the corresponding perfor-
mance measures are reported in Table 1d. This approach allows us to correctly
evaluate synchronization times whenever C' precedes B, but fails otherwise.

Implementing the new performance plug-in for ProM 6 we exploited a differ-
ent strategy, motivated not only by the measures just analysed, but also by the
need of projecting the performance measures from the net back to the BPMN
model, as discussed later. Intuitively, before associating with places the per-
formance measures, we rearrange the sequence of transitions returned by the
log replay in order to fire invisible transitions as soon as possible. We call the
resulting sequences eager and define them formally as follows.

Definition 1 (last visible transition). Let R = [(tr1,41), (tr2,92), ..., (t7n, in)]
be a sequence of transitions and corresponding event indezes, and let j < n. We
define the last visible transition R | j of R before the jth transition as

-1 ifj<0
Rlj=<j—-1 if j € [2,n] and R[j — 1] is visible
Rl(G-1) otherwise



for j from 2 to size(R) do
tr,i < R[j]
if tr is invisible then
k,done + j — 1, false
while k£ > 0 A —~done do
tTrprev, iprev < R[K]
if *tr Ntrp.., # 0 then
done < true
else
R[k + 1] « (trprev, iprev)
R[k] < (tr,maz(R | k,1))
k+—k—1
end if
end while
end if
end for

Fig.4: Conversion of a generic sequence R to a corresponding eager sequence

Definition 2 (eager sequence). Let R = [(tr1,i1), (tr2,2), ..., ((7n,in)] be a
sequence as above. Then R is eager if for all j € [1,n] one of the following holds®

— tr; is visible
— trj is invisible and either R | j = —1 or *tr; Niry, ; 0

Intuitively, a sequence is eager if for each invisible transition ¢ the last pre-
ceding visible transition enables ¢, if it exists. Converting a generic sequence R
obtained from a log replay to a corresponding eager sequence can be done easily
with the algorithm in Fig. 4.

For example, by applying the algorithm to the trace T we obtain the eager
sequence [(4,1),(B,2),(t1,2),(C, 3), (D, 4)], and the corresponding performance
measures are reported in Table le. Notice that now only places p3 and p4 can
have a synchronization time greater than zero: in our opinion these measures
describe more faithfully the evolution of the net. Section 5 further motivate
our approach, by describing advantages of interpreting invisible transitions as
“eager” when the performance measures of the Petri Net must be projected back
to business process models at the higher level of abstraction.

4.1 Using invisible transitions to improve performance analysis

As described above, performance analysis associates suitable measures with the
places of a net. But often one is rather interested in measures related with
the wvisible transitions, which represent system activities, like their waiting time
or duration. In the nets of Fig. 3 the waiting time of each transitions can be
identified with the largest among the waiting times of the places in their pre-set,
but this is not always true. The Petri net in Fig. 5a describes a process where
action A precedes the execution of either B or C. In this case the waiting time

3 As usual, by *t we denote the preset of transition ¢, and by t°® its postset.
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Fig. 5: Improve performance analysis by introducing invisible transitions

of pl is determined by the time interval between the timestamp of action A and
the timestamp of the subsequent action (either B or C). However, from this
measure we cannot determine if B and C have different waiting times, i.e. if the
average waiting times of pl is different when either B or C' occurs. This issue
is even more serious due to presence of recursion. This problem can arise only
when a place in the pre-set of a visible transition is also in the pre-set of another
transition. We call isolated a visible transition such that this does not happen.

Definition 3 (isolated transition). A wvisible transition t of a Petri net is
called isolated if Vp.p € *t = p* = {t}.

By introducing suitable invisible transitions we can transform a net into an
equivalent one (i.e., with the same traces of visible transitions) where all visible
transitions are isolated. For example, the net of Fig. 5b is obtained through this
transformation from that of Fig. 5a: notice that now we can interpret the waiting
times of places p2 and p3 as the waiting times of B and C, respectively.

Another measure that is often useful when analysing a system is the duration
of certain activities. Since the events recorded in a log are considered as instantly
executed (they have execution timestamps recorded, but not their duration) it
is not possible to infer how long the corresponding action ran. Thus in order to
evaluate the execution time of business process activities each of them has to be
modeled by at least two actions, representing its start and its termination, that
have to be recorded by the system in the log with the corresponding timestamps.
Clearly, depending on the application, it might be convenient to represent an
activity with a more complex Petri, for example exploiting three transitions to
model the activity start, successful completion and failure respectively.

5 Supporting BPMN modeling

Several standards for business process modeling (e.g. BPMN and JBPM) pro-
vide much richer graphical primitives than those available for Petri nets, and
allow to model a system at a higher abstraction level, easier to understand for
the stakeholders. In our setting, in order to exploit the algorithms presented in
Section 4 to analyze processes expressed in richer process description languages,
a straightforward strategy is to define a model transformation that starting from
the more abstract specification yields a Petri net. The resulting net can be ana-
lyzed with the presented algorithms to verify conformance of executions and to
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evaluate their performance. The critical issue is then to project back the analysis
result to the starting abstract model, as discussed below.

As a business process modeling formalism our platform will support BPMN.
We adopt essentially the methodology presented in [8] to transform (a subset
of) BPMN models into Petri nets. Even if the subset of BPMN considered here
is quite minimal, on one hand we think that it is sufficient to illustrate the
advantages of our approach, on the other hand we have concrete evidence that it
can be extended seamlessly to other BPMN constructs like events and messages.

The transformation rules for our BPMN subset are presented in Fig. 6 with
a slight change in the rule transforming a BPMN task, for which we generate
a net with two transitions, as discussed above. It is worth stressing that these
transformation rules guarantee that all visible transitions in the resulting net
are isolated, which allows us to exploit the performance algorithm to infer the
execution time of each BPMN task. Let us discuss now, on the basis of these
translation rules, how the analysis results obtained on a net can be projected
back to the BPMN model.

Performance analysis. Recall that in the algorithm proposed in Section 4 invis-
ible transition are treated as eager: if such a transition is fired by the log replay,
it is considered to be fired as soon as it is enabled. For this reason, the waiting
times for places having no visible transition in their post-sets are always zero.
Referring to the rules in Fig. 6, the only places that can have non-zero waiting
times are P(z,T) and Pt, i.e. the places that model BPMN activities. Similarly,
the synchronization time of a place can be greater than zero only if at least one
transition in its post-set depends on another place. The places in Fig. 6 that can
have non-zero synchronization times are just P(z1,J1) and P(x2,J2), i.e. the
places involved in modeling join gateways. Based on these considerations we can
project the performance measures of a net obtained from the translation to the
original BPMN model as follows:

— For each task T the execution time is x(Pt) and the activation time is
x(P(z,T))

11



— For each concurrent branch (i € [1,2]) enclosed by a fork (F'1) and a join
(J1) gateways: (i) the synchronization time is x (P(zi, J1)), namely the time
spent to wait the termination of the other concurrent activities (ii) the exe-
cution time (referred to as x(F'17)) is the sum of & of all places reachable
by traversing the graph starting from P(F%,yi) without visiting P (x4, Ji).
Notice that x (P(xi, J1))+ x(F14) is constant for each branch of a fork/join
pair. We call this time the fork execution time (< (F'1,J1)).

We stress that the considerations discussed above do not hold for the original
ProM 5.2 performance plug-in. In particular, places involved by the join gateways
(P(z1,J1) and P(22,J1)) can have synchronization time greater that zero only
if their presets contain at least one visible transition. Hence, the algorithm can
infer synchronization times of join gateways only if the concurrent branches
terminate with a BPMN task.

Conformance analysis. We exploit a similar reasoning to project back data of
conformance results. Log replay artificially produces missing tokens only to fire
visible transitions. Hence only places in the pre-set of at least one visible transi-
tion can have missing tokens. In Fig. 6 these places are P(z,T) and Pt. Moreover,
log replay fires invisible transitions only if their execution is required to activate
a visible transition. For example, for any execution of the start transition ts the
log replay fires a visible transition that consumes the token in the place P(s,y).
The same consideration holds for all invisible transitions that produce only one
token. Hence, only places in the post-set of a visible transition or of an invisible
transition spawning several tokens can have remaining tokens. In Fig. 6 these
places are Pt, P(T,y), P(F1,yl) and P(F1,y2), that are involved to model a
single BPMN activity and the fork gateway. Thus, we project the conformance
metrics of the Petri net to the starting BPMN model as follows:

— for each task 7" missing tokens in P(x,T) are referred as “unsound execu-
tions”, missing tokens in Pt are referred as “internal failures”, remaining
tokens in Pt are referred as “missing competition” and remaining tokens in
P(T,y) are referred as “interrupted executions”

— for each branch (i € [1,2]) of a fork F'1, the remaining tokens in P(F'1,yi)
are referred as “interrupted branches”. Notice that for each execution of the
transition tF'1 a token can remain in either P(F1,y1) or P(F1,y2), but not
in both places.

6 Citizen migration

In this section we present a real life Italian eGov business process. The BPMN
model in Fig. 7 summarizes the main activities required to perform a change
of residence of an Italian citizen (the annotations can be ignored for the mo-
ment). In order to change the residence, the request must be previously verified
and the necessary sensible data collected by the eGov platform. Note that two
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Fig. 7: BPMN model for citizen migration (annotated with performance analysis)
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Fig. 8: Petri Net for citizen migration (annotated with performance analysis)

different validation tasks can be executed, depending on the citizen being emi-
grating or immigrating. The Petri Net in Fig. 8 has been obtained by applying
the model transformation described in Section 5. Note that for each BPMN task
(e.g. ChangeResidence) the net has two transitions (e.g. CRS and CRC') rep-
resenting the start and completion of the activity. The trace in Fig. 9a records
a possible execution of the Business Process.

An example of performance analysis. In order to evaluate performance measure
of the Petri Net, our plug-in applies the log replay to obtain the sequence
R1 =[(t1,1),(t2,1),(DCS, 1), (t3,1), (IS,2), (IC,3),(DCC,4), (t5,4), (t7,4), (CRS, 5), (CRC, 6)]
Our implementation considers invisible transitions fired immediately. It trans-
form the transition sequence into the eager sequence:
R2 =[(t1,1),(t2,1), (¢t3,1), (DCS, 1), (IS,2),(IC,3), (t5,3),(DCC,4), (t7,4), (CRS, 5), (CRC, 6)]
Figure 8 includes the performance metrics evaluated by our plug-in. All white
places have zero synchronization time and zero waiting time. Waiting times of
places pi, pdc and per represent the execution times of the corresponding BPMN
activities. Waiting time of place p3 is 24s. In fact, execution of transitions ¢1, ¢2
and t3 are associated to the event index 1, while the transition IS is associated
to the event index 2. The only place having non-zero synchronization time is
p5 (147s). This time is equal to the interval among execution of the transitions
IC and DCC'. We stress that the synchronization time of place p5 results from
the transformation of the sequence R1 into the eager sequence R2 (migrating
transition t5 immediately after IC'). We already discussed in Section 5 that
the ProM 5.2 implementation cannot infer synchronization time for the place

13
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Fig.9: Execution Logs

Fig. 10: Petri Net (annotated with conformance analysis)

ph, because its preset contains only invisible transitions. ProM 5.2 yields non-
zero synchronization time for p6 (1227s). Figure 7 shows the projection of the
performance analysis back to the BPMN model.

An example of conformance analysis. The trace log depicted in Fig. 9b provides
an example of wrong execution. In fact, the trace records the execution of both
the exclusive tasks (Immigration and Emigration) and does not carry events
regarding the completion of the activity DataCollection.

The conformance measures yielded from log replay for this trace are depicted
in Fig. 10. Place p3 misses one token: it is required to replay the transition ES
that is not enabled because the alternative branch Immigration already started.
Place pdc contains one remaining token: it depends on the missing termination
of Data Collection. Since termination of this activity is not recorded, place p7
does not receive a token during the log replay and the transition t7 is never
enabled. Hence, the synchronization fails resulting in remaining tokens in both
p4 and p5. The failed synchronization is also the cause of the missing token in
place p8, required to replay the transition CRS.

Figure 11 projects the conformance data back to the BPMN model. The figure
reports: (i) the missing completions of Data Collection; (ii) the unsound execu-
tion of Emigration, because the other branch of the exclusive gateway already
activated; (iii) the interrupted execution of both Immigration and Emigration,
because the join gateway does not synchronize; (iv) the unsound execution of
Change Residence, caused by the failed synchronization.
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7 Integrating ProM in the Process Monitoring platform

ProM 6 exploits the concept of context to allow plug-ins to access to the sur-
rounding environment. A context implements the management of resources, e.g.
thread management, parameter resolution, progress monitoring and process in-
terruption. In order to start the ProM framework, the Boot.boot static method
has to be invoked on the chosen context implementation. The Boot factory is
delegated to create the proper context and to invoke its entry point after the
framework initialization. The integration strategy focuses on the development
of a specific context (ServiceContext) that is Swing-free, but that allows the
environment to interact with the ProM plug-ins, for example by triggering the
execution of a specific analysis algorithm whenever a process instance termi-
nates. Moreover the context should keep a ProM instance alive to satisfy several
requests and to reuse allocated resources (like thread pools). The implemen-
tation of the ServiceContext allows us to allocate thread pools directly or to
delegate their management to the surrounding environment (e.g. to the applica-
tion server JBoss). Moreover, the context exposes the ProM algorithms via an
API: the analysis results are returned as serializable objects.

In order to fulfill the lack of a performance analysis plug-in for ProM 6,
we provided a new implementation exploiting the formal approach described in
Section 4. Our implementation exploits some functionalities provided by existing
plug-ins (e.g. ETConformance makes available the log-replay). This way we can
benefit from further enhancements of the ProM framework. We developed three
other plug-ins: (i) BpmnToPetri transforms a BPMN model into a Petri net; the
plug-in currently support the subset of BPMN described in Section 5. (ii) Con-
formanceToBPMN and (iii) PerformanceToBPMN annotate the BPMN model
with suitable artifacts to represent the conformance and performance measures.

8 Concluding Remarks

We have presented a business process monitoring platform for the Italian eGov-
ernment Enterprise Architecture. The main contributions of this paper are (i)
the integration of the ProM framework into a Service Oriented Architecture, al-
lowing the stakeholders to take benefit transparently from several formal meth-
ods, (ii) an updated performance evaluation algorithm that manages invisible
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transaction as eager, and (iii) a methodology to apply the analysis to high level
process models. Our monitoring platform can be extended to support several new
features. We are developing a web based monitoring interface to represent the
analysis results graphically. We are also implementing the transformation tools
required to handle BPMN models taking inspiration from the methodology pre-
sented in this paper. A further research effort is focused on integrating data
mining techniques into the analysis engine. The interplay between process anal-
ysis and data mining should help discovering, for example, clusters of messages
that cause bottlenecks. Finally, we plan to implement a supervisor component
to trigger suitable actions whenever a SLA constraint is violated.
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