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Abstract. Today’s process modeling languages often force the analyst or mod-
eler to straightjacket real-life processes into simplistic or incomplete models that
fail to capture the essential features of the domain under study. Conventional busi-
ness process models only describe the lifecycles of individual instances (cases)
in isolation. Although process models may include data elements (cf. BPMN),
explicit connections to real data models (e.g. an entity relationship model or a
UML class model) are rarely made. Therefore, we propose a novel notation that
extends data models with a behavioral perspective. Data models can easily deal
with many-to-many and one-to-many relationships. This is exploited to create
process models that can also model complex interactions between different types
of instances. Classical multiple-instance problems are circumvented by using the
data model for event correlation. The declarative nature of the proposed language
makes it possible to model behavioral constraints over activities like cardinal-
ity constraints in data models. The resulting object-centric behavioral constraint
model is able to describe processes involving interacting instances and complex
data dependencies. This model can be then used for conformance checking, i.e.,
diagnosing discrepancies between actual behavior and modeled behavior. We
have developed several ProM plug-ins to edit and check object-centric behav-
ioral constraint models. Experiments show that we can now detect and diagnose
a range of conformance problems that would have remained undetected using
conventional process-model notations. In particular, we illustrate the usefulness
of this new approach by extracting data from the ERP/CRM system Dolibarr.

1 Introduction

Techniques for business process modeling (e.g., BPMN diagrams, Workflow nets,
EPCs, or UML activity diagrams) tend to suffer from two main problems:

– It is difficult to model interactions between process instances, which are in fact
typically considered in isolation. Concepts like lanes, pools, and message flows
in conventional languages like BPMN aim to address this. However, within each
(sub)process still a single instance is modeled in isolation.

– It is also difficult to model the data-perspective and control-flow perspective in a
unified and integrated manner. Data objects can be modeled, but the more power-
ful constructs present in Entity Relationship (ER) models and UML class models
cannot be expressed well in process models. For example, cardinality constraints
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in the data model must influence behavior, but this is not reflected at all in today’s
process models.
Because of these problems there is a mismatch between process models and the

data in (and functionality supported by) real enterprise systems from vendors such as
SAP (S/4HANA), Microsoft (Dynamics 365), Oracle (E-Business Suite), and Sales-
force (CRM). These systems are also known as Enterprise Resource Planning (ERP)
and/or Customer Relationship Management (CRM) systems and support business func-
tions related to sales, procurement, production, accounting, etc. These systems may
contain hundreds, if not thousands, of tables with information about customers, orders,
deliveries, etc. For example, SAP has tens of thousands of tables. Also Hospital In-
formation Systems (HIS) and Product Lifecycle Management (PLM) systems have in-
formation about many different entities scattered over a surprising number of database
tables. Even though a clear process instance notion is missing in such systems, main-
stream business process modeling notations can only describe the lifecycle of one type
of process instance at a time. The disconnect between process models and the actual
processes and systems becomes clear when applying process mining using data from
enterprise systems. How to discover process models or check conformance if there is
no single process instance notion?

The problems mentioned have been around for quite some time (see for example
[?]), but were never solved satisfactorily. Artifact-centric approaches [?,?,?,?] (includ-
ing the earlier work on proclets [?]) attempt to address the above problems. However,
these approaches tend to result in models where

– the description of the end-to-end behavior needs to be distributed over multiple
diagrams (e.g., one process model per artifact),

– the control-flow cannot be related to an overall data model (i.e., there is no explicit
data model or it is separated from the control-flow), and

– interactions between different entities are not visible or separated (because artifacts
are distributed over multiple diagrams).

Within an artifact, proclet, or subprocess, one is forced to pick a single instance notion.
Moreover, cardinality constraints in the data model cannot be exploited while specifying
the intended dynamic behavior. We believe that data and process perspectives can be
unified better, as demonstrated in this paper.

Fig. 1. Object-Centric Behavioral Con-
straint (OCBC) models connect data
constraints (like in a UML class dia-
gram), behavioral constraints (like in
a process model or rule set), and real
event data. This allows for novel forms
of conformance checking.
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This paper proposes the Object-Centric Behavioral Constraint (OCBC) model as a
novel language that combines ideas from declarative, constraint-based languages like
Declare [?], and from data/object modeling techniques (ER, UML, or ORM). Cardi-
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Fig. 2. A small Object-Centric Behavioral Constraint (OCBC) model.

nality constrains are used as a unifying mechanism to tackle data and behavioral depen-
dencies, as well as their interplay (cf. Figure 1). The primary application considered
in this paper is conformance checking [?,?,?,?]. Deviations between observed behavior
(i.e., an event log) and modeled behavior (OCBC model) are diagnosed for compliance,
auditing, or risk analysis. Unlike existing approaches, instances are not considered in
isolation and cardinality constraints in the data/object model are taken into account.
Hence, problems that would have remained undetected earlier, can now be detected.

Figure 2 shows an OCBC model with four activities (create order, pick item, wrap
item, and deliver items) and five object classes (order, order line, delivery, product,
and customer). The top part describes the ordering of activities and the bottom part the
structuring of objects relevant for the process. The lower part can be read as if it was
a UML class diagram. Some cardinality constraints should hold at any point in time as
indicated by the � (“always”) symbol. Other cardinality constraints should hold from
some point onwards as indicated by the♦ (“eventually”) symbol. Consider for example
the relation between order line and delivery. At any point in time a delivery corresponds
to one of more order lines (denoted � 1..∗) and an order line refers to as most one
delivery (denoted � 0..1). However, eventually an order line should refer to precisely
one delivery (denoted ♦ 1). Always, an order has one or more order lines, each order
line corresponds to precisely one order, each order line refers to one product, each order
refers to one customer, etc. The top part shows behavioral constraints and the middle
part relates activities, constraints, and classes.

The notation used in Figure 2 will be explained in more detail later. However, to
introduce the main concepts, we first informally describe the 9 constructs highlighted
in Figure 2. 1 There is a one-to-one correspondence between order objects and cre-
ate order activities. If an object is added to the class order, the corresponding activity
needs to be executed and vice versa. 2 There is a one-to-one correspondence between
order line objects and pick item activities. 3 There is also a bijection between order
line objects and wrap item activities. The ♦ 1 annotations next to pick item and wrap
item indicate that these activities need to be executed for every order line. However,
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they may be executed some time after the order order line is created. 4 There is a one-
to-one correspondence between delivery objects and delivery items activities. 5 Each
create order activity is followed by one or more pick item activities related to the same
order. 6 Each pick item activity is preceded by precisely one corresponding create
order activity. 7 Each pick item activity is followed by one wrap item activity corre-
sponding to the same order line. Each wrap item activity is preceded by one pick item
activity corresponding to the same order line. 8 Each wrap item activity is followed
by precisely one corresponding deliver items activity. 9 Each deliver items activity is
preceded by at least one corresponding wrap item activity. A deliver items activity is
implicitly related to a set of order lines through the relationship between class order
line and class delivery. The notation will be explained later, however, note that a single
order may have many order lines that are scattered over multiple deliveries. Moreover,
one delivery may combine items from multiple orders for the same customer.

The process described in Figure 2 cannot be modeled using conventional notations
(e.g., BPMN) because (a) three different types of instances are intertwined and (b) con-
straints in the class model influence the allowed behavior. Moreover, the OCBC model
provides a full specification of the allowed behavior in a single diagram, so that no
further coding or annotation is needed.

To support OCBC models several ProM plug-ins have been developed: an OCBC
model editor and viewer, a dedicated log viewer, and a conformance checker taking
an OCBC model and event log as input.3 The conformance checker summarizes the
deviations found and highlights conformance problems both in the model and log.

Because OCBC models do not assume a single instance notion and data and control-
flow are tightly coupled (e.g., relations in the object model influence obligations), we
cannot use conventional event logs (e.g., in XES or MXML format). Instead, the OCBC
plug-ins rely on so-called XOC logs, i.e., event logs without an instance notion but with
events referring to objects in an evolving object model. Such logs can be extracted from
any information system centered around a database (e.g., ERP, CRM, HIS, and PLM
systems). To demonstrate this we extract XOC logs from the open-source ERP/CRM
system Dolibarr. The same approach can be used to extract XOC logs from SAP or
Oracle.

The remainder is organized as follows. Related work is discussed in Section 2. Sec-
tion 3 shows that control-flow can be modeled as cardinality constraints over sets of pre-
decessors and successors. Section 4 defines class models and object models. Both views
are integrated in Section 5 where OCBC models are proposed. Section 6 provides the
semantics for OCBC models and demonstrates that novel forms of conformance check-
ing are possible. OCBC models the corresponding conformance checking approach are
supported the ProM plug-ins described in Section 7. Section 8 describes a case study
showing that we can XOC logs from ERP/CRM systems and detect conformance prob-
lems that would remain undetected using conventional approaches. Section 9 concludes
the paper.

3 Download ProM from promtools.org and install the OCBC package.
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2 Related Work

To position the work in literature on business process modeling and process mining, it
is important start from the two key problems faced by mainstream process modeling
notations:

– It is difficult to model interactions between process instances.
– It is difficult to model the data-perspective and control-flow perspective in a unified

and integrated manner.
OCBC models aim to address these problems because they are essential when relating
process models to the actual data in existing real-life enterprise systems. After relat-
ing OCBC models to alternative process modeling notations (Section 2.1) and data
modeling approaches supporting temporal constraints (Section 2.2), we discuss related
techniques in process mining Section 2.3.

2.1 Process Modeling Notations Capturing Data and Multiple Instances

Over time there have been numerous attempts to add data to process models. Consider
for example the various types of colored Petri nets, i.e., Petri nets where tokens have
a value [?,?,?,?,?]. These approaches do not support explicit data modeling as can be
found in Entity-Relationship (ER) models [?], UML class models [?], and Object-Role
Models (ORM) [?]. Places and tokens are often typed but there is no data model to
relate entities and activities.

The first approaches that explicitly related process models and data models appeared
in the 1990-ties [?,?]. See for example the approach by Kees van Hee [?] who combined
(1) Petri nets, extended with time, token values and hierarchy, (2) a specification lan-
guage that is a subset of Z, and (3) a binary data model, extended with complex objects.

Object-aware process management, as supported by the PHILharmonicFlows
framework [?,?], provides an integrated methodology for modeling requirements of
process- and data-centric software systems. Key elements of the approach are the sep-
aration of concerns (data and process can be considered separately) and the ability to
support change.

Artifact-centric approaches [?,?,?,?] (including the earlier work on proclets [?]) aim
to capture business processes in terms of so-called business artifacts, i.e., key entities
driving a company’s operations and whose lifecycles and interactions define an overall
business process. Artifacts have data and lifecycles attached to them, thus relating both
perspectives.

Other approaches integrating data and processes include case handling systems [?]
and product-based workflows [?]. In fact, it is impossible to list all the different propos-
als described in literature.

The approach in this paper is different from the above approaches, because the data-
perspective and control-flow perspective are modeled in a single diagram and while
using a single unifying mechanism, namely cardinality constraints.

The control-flow part of OCBC models is inspired by Declare [?]. In fact, OCBC
models can be seen as declarative models. Declarative process models like Declare
have been formalized in terms of Linear Temporal Logic (LTL) over finite traces [?],
using abductive logic programming [?], Event Calculus [?], regular expressions [?], and
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colored automata [?]. However, none of these declarative approaches allows for data
modeling (other than introducing variables and guards as done in the Declare workflow
system).

2.2 Data Modeling Approaches
〈TODO: Input Marco. Also adapt title.〉

2.3 Data-Aware Process Mining Techniques

The idea to use OCBC models emerged from problems encountered when applying
process mining to data in enterprise systems. The many tables in ERP, CRM, HIS,
and PLM systems illustrate that it is rather naive to assume a single instance notion
when analyzing a process (see Section 1). Automatically discovering process models
for a specific type of instance often leads to small, disconnected, and trivial models.
Interactions between different instance types and between control-flow and data are
key for process mining.

Process mining [?] is a process centric technique that helps to turn event data into
real value: by discovering the real processes, by automatically identifying bottlenecks,
by analyzing deviations and sources of non-compliance, by revealing the actual behav-
ior of people, etc. Although the field is broader, three main types of process mining can
be identified process discovery, conformance checking, and performance analysis.

A process discovery technique takes an event log as an input and produces a model
without using any a-priori information. Typically the focus of process discovery tech-
niques in on the control-flow aspect of a process. Examples are the α-algorithm [?],
heuristic mining [?], fuzzy mining [?], region-based techniques [?,?,?], and inductive
mining techniques [?,?].

For conformance checking an existing process model is compared with an event
log of the process that the model is describing, i.e., modeled behavior is confronted
with observed behavior [?,?]. Conformance checking can be used to check if reality, as
recorded in the log, conforms to the model and vice versa. Most conformance checking
techniques are based on replaying the traces in the event log on the model. In [?] the
number of missing and remaining tokens are counted while replaying the event log. If
an activity in the event log is not enabled, then a missing token is added and at the
end the non-used tokens are counted. This can used to diagnose control-flow problems.
State-of-the-art in conformance checking are the so-called alignment-based approaches
[?,?]. Given a trace in the event log, a closest path in the model is computed by solv-
ing an optimization problem. Most techniques focus on fitness, however, there are also
techniques for computing other quality dimensions such as simplicity, precision, and
generalization.

Techniques for conformance checking can be combined with timing information
present in the event log to analyze performance [?]. For example, by combining align-
ments and timestamps in the event log one can deduce the average time in-between two
activities.

Performance analysis obviously focusses on the time perspective. Most process dis-
covery and conformance checking focus exclusively on control-flow. However, there
are also a few process mining approaches that discover or check process models with
data. See for example [?,?] for conformance checking of Petri nets extended with data.
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One can also apply standard data mining techniques to decision points in processes to
learn guards [?].

A few discovery techniques have been developed for artifact-centric process models
[?,?]. The approach in [?] starts from a raw event stream and learns correlation infor-
mation between the events to build the an Entity-Relationship (ER) model. Guided by
the user a so-called artifact-centric log is created. Such artifact-centric logs are used to
discover the lifecycles of artifacts. Here any approach can be used that produces a Petri
net. In the final step these are translated into the Guard-Stage-Milestone (GSM) nota-
tion [?]. The approach in [?] uses a different starting point: relational transactional data
from an ERP system is exploited to learn a process model describing all transactions
and their order. The approach can detect deviations and deal with convergence (one
event is related to multiple cases) and divergence (a case is related to multiple events
of the same event type) [?]. The result is a set of interconnected lifecycle models. The
technique may discover interactions between artifacts at the type level and the event
level. Unlike OCBC models, the different instance notions are separated in different
diagrams and the result does not show the interplay between data and control-flow as
shown in Figure 2.

Although OCBC models can be used for all three main types of process mining, we
focus on conformance checking. Most related are [?,?] that check the conformance of
artifact-centric models expressed in terms of proclets [?]. These papers show that pro-
cess instances cannot be considered in isolation as instances in artifact-centric processes
may overlap and interact with each other. This complicates conformance checking but
the problem can be decomposed into a set of smaller problems that can be analyzed
using conventional conformance checking techniques [?,?]. These artifact-centric con-
formance checking techniques do not relate control-flow to some overall data model
(like the class model in OCBC models).

Also related is the work on conformance checking of declarative models [?]. How-
ever, this work does not consider multiple intertwined instance notions and also does
not relate control-flow to some overall data model as in Figure 2.

Moreover, none of the approaches mentioned uses cardinality constrains as a unify-
ing mechanism to tackle data and behavioral dependencies, as well as their interplay.

3 Modeling Behavioral Cardinality Constraints

In this paper, a process is merely a collection of events without assuming some case or
process instance notion. Each event corresponds to an activity and may have additional
attributes such as the time at which the event took place, the resource executing the cor-
responding event, the type of event (e.g., start, complete, schedule, abort), the location
of the event, or the costs of an event. Each event attribute has a name (e.g., “age”) and
a value (e.g., “49 years”). Moreover, events are atomic and ordered. For simplicity, we
assume a total order. To model the overlapping of activities in time one can use start
and complete events.

Definition 1 (Events and Activities). UE is the universe of events, i.e., things that
happened. UA is the universe of activities.
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– Function act ∈ UE → UA maps events onto activities.
– Events can also have additional attributes (e.g., timestamp, cost, resource, or

amount). UAttr is the universe of attribute names. UVal is the universe of attribute
values. attr ∈ UE → (UAttr 6→ UVal) maps events onto a partial function assign-
ing values to some attributes,4

– Relation � ⊆ UE × UE defines a total order on events.5

Unlike traditional event logs [?] we do not assume an explicit case notion. Normally,
each event corresponds to precisely one case, i.e., a process instance. In the Object-
Centric Behavioral Constraint models (OCBC models) described in Section 5 we do
not make this restriction and can express complex interactions between a variety of
objects in a single diagram. However, to gently introduce the concepts, we first define
constraints over a collection of ordered events.

Definition 2 (Event Notations). Let E ⊆ UE be a set of events ordered by � and
related to activities through function act . For any event e ∈ E:

– Ee(E) = {e′ ∈ E | e′ � e} are the events before and including e.
– De(E) = {e′ ∈ E | e � e′} are the events after and including e.
– Ce(E) = {e′ ∈ E | e′ ≺ e} are the events before e.6

– Be(E) = {e′ ∈ E | e ≺ e′} are the events after e.
– ∂a(E) = {e′ ∈ E | act(e′) = a} are the events corresponding to activity a ∈ UA.

A process model can be viewed as a set of constraints. In a procedural language
like Petri nets, places correspond to constraints: removing a place may allow for more
behavior and adding a place can only restrict behavior. In this paper, we will employ
a graphical notation inspired by Declare [?] (see Section 2). Here, we provide a for-
malization of a subset of Declare in terms of behavioral cardinality constraints. This
allows us to reason about behavior and data in a unified manner, since both use cardi-
nality constraints. The following cardinality notion will be used to constrain both data
and behavior.

Definition 3 (Cardinalities). UCard = {X ⊆ IN | X 6= ∅} defines the universe of all
possible cardinalities. Elements of UCard specify non-empty sets of integers.

Cardinalities are often used in data modeling, e.g., Entity-Relationship (ER) models
and UML Class models may include cardinality constraints. Table 1 lists a few short-
hands typically used in such diagrams. For example, “1..∗” denotes any positive integer.

In line with literature, we adopt the notation in Table 1 for cardinality constraints
over data. For behavioral cardinality constraints, we adopt a different notation, but very
similar in spirit. Given some reference event e we can reason about the events before
e and the events after e. We may require that the cardinality of the set of events corre-
sponding to a particular activity before or after the reference event lies within a partic-
ular range.

4 f ∈ X 6→ Y is a partial function with domain dom(f) ⊆ X .
5 A total order is a binary relation that is (1) antisymmetric, i.e. e1 � e2 and e2 � e1 implies
e1 = e2, (2) transitive, i.e. e1 � e2 and e2 � e3 implies e1 � e3, and (3) total, i.e., e1 � e2
or e2 � e1.

6 e′ ≺ e if and only if e′ � e and e′ 6= e.
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notation allowed cardinalities
1 {1}

1..k {1, 2, . . . , k}
∗ {0, 1, 2, . . .}

1..∗ {1, 2, . . .}

Table 1. Some examples of fre-
quently used shorthands for ele-
ments of UCard .

a1 a2 a3
c1 c2

Fig. 3. Two behavioral cardinality constraints: constraint c1 specifies that all a2 events should
be preceded by precisely one a1 event and constraint c2 specifies that all a2 events should be
succeeded by at least one a3 event.

Consider for example the two constraints depicted in Figure 3. Assume a set of
events E ⊆ UE . The reference events for c1 are all a2 events, i.e., all events Ec1ref =
∂a2(E). This is indicated by the black dot connecting the c1 arrow to activity a2. Now
consider a reference event eref ∈ Ec1ref . The single-headed arrow towards the black
dot indicates that eref should be preceded by precisely one a1 event. The a1 events
are called target events (counterpart of eref when evaluating the constraint). Formally,
constraint c1 demands that |Ceref (∂a1(E))| = 1, i.e., there has to be precisely one a1
event before eref .

The reference events for c2 are also all a2 events, i.e., Ec2ref = ∂a2(E). Again,
this is visualized by the black dot on the a2-side of the constraint. The double-headed
arrow leaving the black dot specifies that any eref ∈ Ec2ref should be followed by at
least one a3 event. The target events in the context of c2 are all a3 events. Formally:
|Beref (∂a3(E))| ≥ 1, i.e., there has to be at least one a3 event after eref .

The two constraints in Figure 3 are just examples. We allow for any constraint that
can be specified in terms of the cardinality of preceding and succeeding target events
relative to a collection of reference events. Therefore, we define the more general notion
of constraint types.

Definition 4 (Constraint Types). UCT = {X ⊆ IN×IN | X 6= ∅} defines the universe
of all possible constraint types. Any element of UCT specifies a non-empty set of pairs of
integers: the first integer defines the number of target events before the reference event
and the second integer defines the number of target events after the reference event.

Table 2 shows eight examples of constraint types. Constraint c1 is a unary-
precedence constraint and constraint c2 is a response constraint. The graphical represen-
tations of the eight example constraint types are shown in Figure 4. As a shorthand, one
arrow may combine two constraints as shown in Figure 5. For example, constraint c34
states that after placing an order there is precisely one payment and before a payment
there is precisely one order placement.
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Table 2. Examples of constraints types (i.e., elements of UCT ), inspired by Declare. Note that a
constraint is defined with respect of a reference event eref .

constraint formalization
response {(before, after) ∈ IN× IN | after ≥ 1}

unary-response {(before, after) ∈ IN× IN | after = 1}
non-response {(before, after) ∈ IN× IN | after = 0}
precedence {(before, after) ∈ IN× IN | before ≥ 1}

unary-precedence {(before, after) ∈ IN× IN | before = 1}
non-precedence {(before, after) ∈ IN× IN | before = 0}

co-existence {(before, after) ∈ IN× IN | before + after ≥ 1}
non-co-existence {(before, after) ∈ IN× IN | before + after = 0}

before ≥ 0 and after ≥ 1

before ≥ 0 and after = 1

before ≥ 0 and after = 0

before ≥ 1 and after ≥ 0

before = 1 and after ≥ 0

before = 0 and after ≥ 0

before + after ≥ 1

before = 0 and after = 0

(response)

(unary-response)

(non-response)

(precedence)

(unary-precedence)

(non-precedence)

(co-existence)

(non-coexistence)

Fig. 4. Graphical notation for the example constraint types defined in Table 2 (example elements
of UCT ). The dot on the left-hand side of each constraint refers to the reference events. Target
events are on the other side that has no dot. The notation is inspired by Declare, but formalized
in terms of cardinality constraints rather than LTL.

A Behavioral Constraint (BC) model is a collection of activities and constraints (cf.
Figure 3).7

Definition 5 (Behavioral Constraint Model). A behavioral constraint model is a tuple
BCM = (A,C, πref , πtar , type), where

– A ⊆ UA is the set of activities (denoted by rectangles),
– C is the set of constraints (A ∩ C = ∅, denoted by various types of edges),
– πref ∈ C → A defines the reference activity of a constraint (denoted by a black

dot connecting constraint and activity),
– πtar ∈ C → A defines the target activity of a constraint (other side of edge), and
– type ∈ C → UCT specifies the type of each constraint (denoted by the type of

edge).

Figure 3 defines the BC model BCM = (A,C, πref , πtar , type) with A =
{a1, a2, a3}, C = {c1, c2}, πref (c1) = a2, πref (c2) = a2, πtar (c1) = a1,

7 Note that BC models depend on the classical instance notion, i.e., the model describes the
lifecycle of single instance. OCBC models do not assume a single instance notion. However,
we introduce behavioral constraint models to gently introduce the concepts.
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equalsregister play musicc12

place order payc34 equals

register play music
c1

place order pay
c3

c2

c4

Fig. 5. An arrow with two reference events (•) can be used as a shorthand. Constraint c12 (c34)
corresponds to the conjunction of constraints c1 and c2 (resp. c3 and c4).

πtar (c2) = a3, type(c1) = {(before, after) ∈ IN × IN | before = 1} (unary-
precedence), and type(c2) = {(before, after) ∈ IN × IN | after ≥ 1} (response).
Given a set E of events, we can check whether constraints are satisfied (or not), thus
providing a natural link to conformance checking.

Definition 6 (Constraint Satisfaction). Let BCM = (A,C, πref , πtar , type) be a BC
model, and E ⊆ UE a set of events.

– Event set E satisfies constraint c if and only if

(|Ceref (∂πtar (c)(E))|, |Beref (∂πtar (c)(E))|) ∈ type(c) for all eref ∈ ∂πref (c)(E)

– Event set E satisfies BCM if and only if E satisfies each constraint c ∈ C.

The reference activity of a constraint defines the corresponding set of reference
events Ecref . For each reference event it is checked whether the cardinality constraint
is satisfied. Ceref(∂πtar (c)(E)) are all target events before the reference event eref .
Beref(∂πtar (c)(E)) are all target events after the reference event eref . Consider, e.g.,
c1 in Figure 3. All a2 events are reference events and all a1 events are target events.
For this exampleCeref(∂πtar (c1)(E)) is the set of a1 events before the selected a2 event
(eref ). The cardinality of this set should be precisely 1.

In traditional process modeling notations a constraint is defined for one process
instance (case) in isolation. This means that the set E in Definition 6 refers to all events
corresponding to the same case. As discussed before, the case notion is often too rigid.
There may be multiple case-notions at the same time, causing one-to-many or many-
to-many relations that cannot be handled using traditional monolithic process models.
Moreover, we need to relate events to (data) objects. All these issues are discussed next.

4 Modeling Data Cardinality Constraints

Next to behavior as captured through events, there are also objects that are grouped
in classes. Objects may be related and cardinality constraints help to structure depen-
dencies. Entity-Relationship (ER) models [?], UML class models [?], and Object-Role
Models (ORM) [?] are examples of notations used for object modeling, often referred to
as data modeling. In this paper, we use the simple notation shown in Figure 6(a) to spec-
ify class models. The notation can be viewed as a subset of such mainstream notations.
The only particular feature is that cardinality constraints can be tagged as “always” (�)
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or “eventually” (♦). For example, for every order order line there is always at most one
delivery (� 0..1) and eventually (i.e., from some point in time onwards) there should
be a corresponding delivery(♦ 1).

r1 r2

r3

r1
r2

r3

(a) class model

(b) object model

1

1 1

1

1

1

1

1..* 1..* 1
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Fig. 6. Example of a class model and corresponding object model.

Definition 7 (Class Model). A class model is a tuple ClaM = (OC ,RT , π1, π2, ]
�
src ,

]♦src , ]
�
tar , ]

♦
tar ),where

– OC is a set of object classes,
– RT is a set of relationship types (OC ∩ RT = ∅),
– π1 ∈ RT → OC gives the source of a relationship,
– π2 ∈ RT → OC gives the target of a relationship,
– ]�src ∈ RT → UCard gives the cardinality of the source of a relationship (the

constraint should hold at any point in time as indicated by �),
– ]♦src ∈ RT → UCard gives the cardinality of the source of a relationship (the

constraint should hold from some point onwards as indicated by ♦),
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– ]�tar ∈ RT → UCard gives the cardinality of the target of a relationship (the
constraint should hold at any point in time as indicated by �), and

– ]♦tar ∈ RT → UCard gives the cardinality of the target of a relationship (the
constraint should hold from some point onwards as indicated by ♦).

The class model ClaM = (OC ,RT , π1, π2, ]
�
src , ]

♦
src , ]

�
tar ,

]♦tar ) depicted in Figure 6(a) has five object classes OC =
{order , order line, delivery , customer , product} and five relationship types
RT = {r1 , r2 , r3 , r4 , r5}. Relationship type r1 is connecting classes order
and order line: π1(r1) = order and π2(r1) = order line . For the other relationships
types, we have: π1(r2) = order line , π2(r2) = delivery , π1(r3) = order line , and
π2(r3) = product , etc.

The notation of Table 1 is extended with � (“always”) or ♦ (“eventually”) to
specify the cardinalities in Figure 6(a). ]�src(r1) = {1}, i.e., for each object in class
order line there is always precisely one corresponding object in order . This is indi-
cated by the “� 1” annotation on the source side (i.e., the order side of r1) in Fig-
ure 6(a). ]�tar (r1) = {1, 2, 3, . . .}, i.e., for each object in class order there is always at
least one corresponding object in order line . This is indicated by the “� 1..∗” annota-
tion on the target side (i.e., the order line side) of r1. Not shown are ]♦src(r1) = {1}
(“♦ 1”) and ]♦tar (r1) = {1, 2, 3, . . .} (“♦ 1..∗”) as these are implied by the “always”
constraints. One the target side of r2 in Figure 6(a) there are two cardinality constraints:
]�tar (r2) = {0, 1} and ]♦tar (r2) = {1}. This models that eventually each order line
needs to have a corresponding delivery (“♦ 1”). However, the corresponding delivery
may be created later (“� 0..1”). We only show the “eventually” (♦) cardinality con-
straints that are more restrictive than the “always” (�) cardinalities in the class model.
Obviously, ]♦src(r) ⊆ ]�src(r) and ]♦tar (r) ⊆ ]�tar (r) for any r ∈ RT since constraints
that always hold also hold eventually.

Objects can also have attributes and therefore in principle the class model should
list the names and types of these attributes. We abstract from object/class attributes in
this paper, as well as from the notions of hierarchies and subtyping, but they could be
added in a straightforward manner.

A class diagram defines a “space” of possible object models, i.e., concrete collec-
tions of objects and relations instantiating the class model.

Definition 8 (Object Model). UO is the universe of object identifiers. An object model
for class model ClaM = (OC ,RT , π1, π2, ]

�
src , ]

♦
src , ]

�
tar , ]

♦
tar ) is a tuple OM =

(Obj ,Rel , class), where:
– Obj ⊆ UO is the set of objects,
– Rel ⊆ RT ×Obj ×Obj is the set of relations,
– class ∈ Obj → OC maps objects onto classes.
UOM is the universe of object models.

Figure 6(b) shows an object model OM = (Obj ,Rel , class). The ob-
jects are depicted as grey dots: Obj = {o1 , o2 , o3 , ol1 , ol2 , . . . , ol7 , d1 , d2 ,
c1 , . . . , c4 , p1 , . . . , p5}. There are three objects belonging to object class oc1 , i.e.,
class(o1 ) = class(o2 ) = class(o3 ) = order . There are seven relations correspond-
ing to relationship r1 , e.g., (r1 , o1 , ol1 ) ∈ Rel and (r1 , o2 , ol5 ) ∈ Rel .
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Note that objects and events are represented by unique identifiers. This allows us to
refer to a specific object or event. Even two events or objects with the same properties
are still distinguishable by their identity.

The cardinalities specified in the class model should be respected by the object
model. For example, for each object in class order line there is precisely one corre-
sponding object in order according to r1 . A valid object model complies with the
“always” (�) cardinalities in the class model. A valid model is also fulfilled is also the
possibly stronger “eventually” (♦) cardinality constraints are satisfied.

Definition 9 (Valid Object Model). Let ClaM = (OC ,RT , π1, π2, ]
�
src , ]

♦
src , ]

�
tar ,

]♦tar ) be a class model and OM = (Obj ,Rel , class) ∈ UOM be an object model.
OM is valid for ClaM if and only if

– for any (r, o1, o2) ∈ Rel : class(o1) = π1(r) and class(o2) = π2(r),
– for any r ∈ RT and o2 ∈ ∂π2(r)(Obj ), we have that 8

|{o1 ∈ Obj | (r, o1, o2) ∈ Rel}| ∈ ]�src(r), and

– for any r ∈ RT and o1 ∈ ∂π1(r)(Obj ), we have that

|{o2 ∈ Obj | (r, o1, o2) ∈ Rel}| ∈ ]�tar (r)

A valid objected model is also fulfilled if the stronger cardinality constraints hold (these
are supposed to hold eventually):

– for any r ∈ RT and o2 ∈ ∂π2(r)(Obj ), we have that

|{o1 ∈ Obj | (r, o1, o2) ∈ Rel}| ∈ ]♦src(r), and

– for any r ∈ RT and o1 ∈ ∂π1(r)(Obj ), we have that

|{o2 ∈ Obj | (r, o1, o2) ∈ Rel}| ∈ ]♦tar (r)

The object model in Figure 6(b) is indeed valid. If we would remove relation
(r1 , o1 , ol1 ), the model would no longer be valid (because an order line should al-
ways have a corresponding order). Adding a relation (r1 , o2 , ol1 ) would also destroy
validity. Both changes would violate the “� 1” constraint on the source side of r1. The
object model in Figure 6(b) is not fulfilled because the “♦ 1” constraint on the target
side of r2 does not hold. Order lines ol2 and ol4 do not (yet) have a corresponding
delivery. Adding deliveries for these order lines and adding the corresponding relations
would make the model fulfilled.

Definition 9 only formalizes simple cardinality constraints involving a binary rela-
tion and abstracting from attribute values. In principle more sophisticated constraints
could be considered: the object model OM is simply checked against a class model
ClaM . For example, the Object Constraint Language (OCL) [?] could be used to define
more refined constraints.

8 ∂oc(Obj ) = {o ∈ Obj | class(o) = oc} denotes the whole set of objects in class oc.
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5 Object-Centric Behavioral Constraints

In Section 3, we focused on control-flow modeling and formalized behavioral con-
straints without considering the structure of objects. In Section 4, we focused on struc-
turing objects and formalized cardinality constraints on object models (i.e., classical
data modeling). In this section, we combine both perspectives to fully address the chal-
lenges described in the introduction.

5.1 Object-Centric Event Logs

First, we formalize the notion of an event log building on the event notion introduced in
Definition 1. An event log is a collection of events that belong together, i.e., they belong
to some “process” where many types of objects/instances may interact. Next to scoping
the log, we also relate events to objects. Note that the same event may refer to multiple
objects and one object may be referred to by multiple events.

Definition 10 (Event Log). An event log is a tuple L = (E, act , attr ,EO , om,�),
where

– E ⊆ UE is a set of events,
– act ∈ E → UA maps events onto activities,
– attr ∈ E → (UAttr 6→ UVal) maps events onto a partial function assigning values

to some attributes,
– EO ⊆ E × UO relates events to sets of object references,
– om ∈ E → UOM maps each event to the object model directly after the event took

place, and
– � ⊆ E × E defines a total order on events.

In the context of an event L, each event e is associated with object model OM e =
(Obj e,Rele, classe) = om(e). In the remainder, we refer directly to Obj e, Rele, classe
for e ∈ E if the context is clear.

o1

e1

o5

o1

e2

o2

o5

o1

o3

e3

o2

o5

o1

o3

e4

o2

o4

o5

o1

o3

e5

o2

o4

o5

Fig. 7. Each event e refers to the object model right after e occurred: OM e =
(Obj e,Rele, classe) = om(e).

Figure 7 illustrates the evolution of the object model. After the occurrence of some
event e objects may have been added (we assume monotonicity), and relationships may
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have been added or removed. Event e may refer to objects through relation EO and
these objects need to exist, i.e., for all (e, o) ∈ EO : o ∈ Obj e. We assume that objects
cannot be removed at a later stage to avoid referencing non-existent objects. Objects
can be marked as deleted but cannot be removed (e.g, by using an attribute or relation).

The event log provides a snapshot of the object model after each event. This triggers
the question: Can the object model be changed in-between two subsequent events? If
no such changes are possible, then the object model before an event is the same as the
object model after the previous event. If we would like to allow for updates in-between
events, then these could be recorded in the log. Events referring to some artificial activ-
ity update could be added to signal the updated object model. We could also explicitly
add a snapshot of the object model just before each event. In the remainder, we only
consider the snapshot OM e after each event e ∈ E.

Note that Definition 10 calls for event logs different from the standard XES format.
XES (www.xes-standard.org), which is supported by the majority of process
mining tools, assumes a case notion (i.e., each event refers to a process instance) and
does not keep track of object models. Therefore, we defined the XOC format which is
basically an XML version of Definition 10 (see Section 7). In Section 8 we show that
such event logs can indeed be extracted from today’s information systems.

5.2 OCBC Models

Next, we define Object-Centric Behavioral Constraint (OCBC) models. Through a
combination of control-flow modeling and data/object modeling, we relate behavior
and structure. The BC models from Section 3 are connected to the class models of
Section 4 to provide the integration needed.

t1

pay

ticket

1..*

0..1

1

t2

p1

t1 t2

t3

p23

t1 t2

t3

p3

payment event
that refers to tickets 

t2 and t3

object model directly after
the payment event (having 

three ticket objects)  

fragment of larger 
OCBC model

activity

object class

every payment 
refers to one or 

more tickets 

every ticket 
always refers to at 
most one payment

eventually every
ticket refers to precisely 

one payment

t4

Fig. 8. Illustrating cardinality constraints ]�A, ]♦A , and ]OC .

A key ingredient is that events and objects are related as illustrated in Figure 8.
Payment activity p1 refers to ticket t1 , activity p23 refers to tickets t2 and t3 , and
activity p3 refers to ticket t4 . Figure 8 shows three example constraints: “� 0..1” (every
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ticket always refers to at most one payment), “♦ 1” (eventually every ticket refers to
precisely one payment), and “1..∗” (every payment refers to one or more tickets).

Definition 11 (Object-Centric Behavioral Constraint Model). An
object-centric behavioral constraint model is a tuple OCBCM =
(BCM ,ClaM ,AOC , ]�A, ]

♦
A, ]OC , crel), where

– BCM = (A,C, πref , πtar , type) is a BC model (Definition 5),
– ClaM = (OC ,RT , π1, π2, ]

�
src , ]

♦
src , ]

�
tar , ]

♦
tar ) is a class model (Definition 7),

– A, C, OC and RT are pairwise disjoint (no name clashes),
– AOC ⊆ A×OC is a set of relations between activities and object classes,
– ]�A ∈ AOC → UCard gives the cardinality of the source of a relation linking an

activity and an object class (activity side, the constraint should hold at any point in
time as indicated by �),

– ]♦A ∈ AOC → UCard gives the cardinality of the source of a relation linking an
activity and an object class (activity side, the constraint should hold from some
point onwards as indicated by ♦),

– ]OC ∈ AOC → UCard gives the cardinality of the target of a relation linking an
activity and an object class (object-class side), and

– crel ∈ C → OC ∪RT is the constraint relation satisfying the following conditions
for each c ∈ C:
• {(πref (c), oc), (πtar (c), oc)} ⊆ AOC if crel(c) = oc ∈ OC , and
• {(πref (c), π1(r)), (πtar (c), π2(r))} ⊆ AOC or {(πref (c), π2(r)), (πtar (c),
π1(r))} ⊆ AOC if crel(c) = r ∈ RT .

a1 a2 a3

oc2oc1 oc3
1 1..* 1..2 0..*

1

1

1..*

1 1..*

0..1
0..*

1
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r1 r2
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one oc1 object

relationship 
between activities 

and classes
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reference event

constraint relation
(used to determine target events related 

to the reference event)

0..*

each oc2 object 
refers to at least 
one a1 activity

1 1..*

Fig. 9. An example model illustrating the main ingredients of an OCBC model.
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An Object-Centric Behavioral Constraint model (OCBC model) includes a behav-
ioral constraint model (to model behavior) and a class model (to model objects/data).
These are related through relation AOC and functions ]�A, ]♦A, ]OC , and crel . We use
Figure 9 to clarify these concepts.

AOC relates activities and object classes. In Figure 9, AOC = {(a1 , oc1 ),
(a1 , oc2 ), (a2 , oc2 ), (a3 , oc2 ), (a3 , oc3 )}. For example, a1 may potentially refer to
oc1 and oc2 objects, but not to oc3 objects because (a1 , oc3 ) 6∈ AOC . Recall that
in an event log L there is a many-to-many relationship between events and objects
(EO ⊆ E × UO) constrained by AOC .

Functions ]�A, ]♦A, and ]OC define possible cardinalities, similar to cardinality con-
straints in a class model. Functions ]�A and ]♦A define how many events there need to be
for each object. Since the object model is evolving, there are two types of constraints:
constraints that should hold at any point in time from the moment the object exists (]�A)
and constraints that should eventually hold ]♦A. Function ]OC defines how many objects
there need to be for each event when the event occurs (specified by EO).

As indicated by the “� 1” annotation on the a1 -side of the line connecting ac-
tivity a1 and object class oc1 , there is precisely one a1 event for each oc1 object
(from the moment it exists): ]�A(a1 , oc1 ) = {1}. As indicated by the “♦ 1..∗” on
the a1 -side of the line connecting activity a1 and object class oc2 , we have that
]♦A(a1 , oc2 ) = {1, 2, . . .}. This means that eventually each oc2 object refers to at least
one a1 activity. Note that an oc2 object does not need to have a corresponding a1 event
when it is created. However, adding a new oc2 object implies the occurrence of at least
one corresponding a1 event to satisfy the cardinality constraint “♦ 1..∗”, i.e., an obli-
gation is created. If the annotation “� 1..∗” would have been used (instead of “♦ 1..∗”),
then the creation of any oc2 object needs to coincide with a corresponding a1 event,
because the cardinality constraints should always hold (�) and not just eventually (♦).

As indicated by the “1” annotation on the oc2 -side of the line connecting activity
a1 and object class oc2 , we then have that ]OC (a1 , oc2 ) = {1}. This means that each
a1 activity refers to precisely one oc2 object.

Let’s now consider relation (a2 , oc2 ) ∈ AOC . There should be at most one a2
event for each oc2 object from the moment it exists: ]�A(a2 , oc2 ) = {0, 1}. Eventu-
ally there should be precisely one a2 event for each oc2 object: ]♦A(a2 , oc2 ) = {1}.
]OC (a2 , oc2 ) = {1, 2, . . .} indicates that each a2 event refers to at least one oc2 ob-
ject.

Annotations of the type “♦ 0..∗” and “� 0..∗” are omitted from the diagram because
these impose no constraints. Also implied constraints can be left out, e.g., “� 1..∗”
implies “♦ 1..∗”.

Function crel defines the scope of each constraint thereby relating reference events
to selected target events. crel(c) specifies how events need to be correlated when eval-
uating constraint c. This is needed because we do not assume a fixed case notion and
different entities may interact. As illustrated by Figure 10 we basically consider two
types of constraints. In both cases we navigate through the object model to find tar-
get events for a given reference event. Figures 11 and 12 illustrate how to locate target
events. For each reference event we need the set of all target events in order to check
the cardinality constraint.
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(a) the reference event and target events are 
related through common objects

(b) the reference event and target events are 
related through relations in the object model

Fig. 10. Two types of constraint relations: (a) crel(c) = oc ∈ OC , i.e., the target events are
related to the reference event through shared objects of the class oc, (b) crel(c) = r ∈ RT , i.e.,
the target events are related to the reference event through relations of type r (in any direction).
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Fig. 11. Given a reference event for a constraint with crel(c) = oc ∈ OC we navigate to the
target events through shared object references.

If crel(c) = oc ∈ OC , then the behavioral constraint is based on object class oc. In
Figure 9, crel(c2 ) = oc2 . This means that the target events for constraint c2 need to
be related to the reference events through objects of class oc2 . Let eref be the reference
event for constraint c2 . eref refers to 1 or more oc2 objects. The target events of eref
for c2 are those a3 events referring to one of these objects.

If crel(c) = r ∈ RT , then the target events are related to the reference event through
relations of type r in the object model. Relation r can be traversed in both directions.
In Figure 9, crel(c1 ) = r1 indicating that reference events are related to target events
through relationship r1 . Let eref be the reference a1 event for constraint c1 . eref refers
to oc1 objects that are related to oc2 objects through r1 relations. The target events of
eref for c1 are those a2 events referring to one of these oc2 objects.

We have now introduced all the modeling elements used in Figure 2. Note that cre-
ate order activities are related to pick item activities through the relationship connecting
class order with class order line.
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Fig. 12. Given a reference event for a constraint with crel(c) = r ∈ RT we navigate to the target
events through relation r in the object model.

5.3 Discussion

The graphical notation introduced (e.g., like in Figure 2) fully defines an OCBC model.
To illustrate this let us consider a completely different example.

Figure 13 models a hiring process. An organization may create a position. People
can apply for such a position, but need to register first. Applications for a position are
only considered in the period between opening the position and closing the application
process for the position. An application may be followed by at most five reference
checks and at most two interviews. In the end one person is selected and subsequently
hired for the position.

There are four object classes in the OCBC model: person, application, position,
and employee. The cardinality constraints in Figure 13 show that: each application al-
ways refers to precisely one person and one position, each person eventually applies for
some position, for every position there will eventually be an application, each employee
refers to precisely one application and position, each application refers to at most one
employee, and each position will eventually refer to one employee.

There is a one-to-one correspondence between registrations (activity register) and
persons (class person). Activities apply, check reference, and interview each refer to the
class application. Activity apply creates one new application object. Activities open
pos., check close pos., and select each refer to the class position. Activity open pos.
creates one new position object. There is also a one-to-one correspondence between
hirings (activity hire) and employees (class employee).

Let us now consider the constraints in more detail:
– Constraint c1 specifies that every reference check should be preceded by precisely

one corresponding application (unary-precedence constraint).
– Constraint c2 specifies that every interview should be preceded by precisely one

corresponding application (unary-precedence).
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Fig. 13. An OCBC model modeling a hiring process.

– Constraint c3 combines a unary-response and a unary-precedence constraint stating
that the opening a a position should be followed by the closing of the application
process and the closing should be preceded by the opening of the position.

– Constraint c4 also combines a unary-response and a unary-precedence constraint
stating that the two activities are executed in sequence.

– Constraint c5 specifies that applications for a position need to be preceded by the
opening of that position.

– Constraint c6 specifies that after closing a position there should not be any new
applications for this position (non-response constraint).

– Constraint c7 specifies that every hire needs to be preceded by at least one interview
with the candidate applying for the position (precedence constraint).

– Constraint c8 again combines a unary-response and a unary-precedence constraint
stating that the two activities are executed in sequence.

It is important to note that the constraints are based on the object model and that
there is not a single instance notion. To illustrate this consider the BPMN model in Fig-
ure 14 which models the lifecycles of persons, positions, applications, and employees
in separate diagrams. The BPMN model looks very simple, but fails to capture depen-
dencies between the different entities. Consider for example constraints c5, c6, c7, and
c8 in the OCBC model of Figure 13. The BPMN model does not indicate that there
is a one to many relationship between positions and applications, and does not show
that one can only apply if the corresponding position is opened but not yet closed. The
BPMN model does not indicate that only one person is hired per position and that the
person to be hired should have registered, applied, and had at least one interview. The
BPMN model does not indicate that employees are hired after the completion of the
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selection process. Note that the same person could apply for multiple positions and
many people may apply for the same position. Obviously this cannot be captured using
a single process instance (case) notion.

application

position

open pos. close pos. select

apply

check reference

interview

employee

hire

person

register

Fig. 14. An attempt to capture the OCBC model of Figure 13 in terms of four BPMN models. The
relations with the overall data model and interactions between the different entities are no longer
visible. For example, insights like “one can only apply if the corresponding position is opened
but not yet closed” and “only people that had an interview can be hired” get lost.

Comparing Figure 13 and Figure 14 reveals that modeling the lifecycles of enti-
ties separately, like in artifact-centric approaches, is not sufficient to capture the real
process. The individual lifecycles are simple, but fail to reveal the interplay between
persons, positions, applications, and employees.

It is essential to understand that the scoping of events considered in a constraint
is done through the object model. This provides a tight integration between behavior
and structure. Moreover, the approach is much more general and more expressive than
classical approaches where events are correlated through cases. Normally, process mod-
els (both procedural and declarative) describe the lifecycle of a process instance (i.e.,
case) in isolation. This implies that events are partitioned based on case identifiers and
different cases cannot share events. Hence, one-to-many and many-to-many relation-
ships cannot be modeled (without putting instances in separate subprocesses, artifacts
or proclets). In fact, more complicated forms of interaction cannot be handled.

Note that traditional single-instance modeling approaches can still be mimicked
by using an object model having one object class case and crel(c) = case for each
constraint c. Figure 15 sketches this situation and illustrates that the classical view on
process behavior is every limiting, since complex relationships cannot be captured, and
the link to data/object models is missing.

6 Conformance Checking Using OCBC Models

Given an event log, an object model, and an object-centric behavioral constraint model,
we want to check whether reality (in the form of an event log L and an object model
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Fig. 15. An OCBC model mimicking the classical situation where behavior needs to be straight-
jacketed in isolated process instances (i.e., cases).

OM ) conforms to the model OCBCM . We identify nine types of possible conformance
problems. Most of these problems are not captured by existing conformance checking
approaches [?,?,?,?].

First, we implicitly provide operational semantics for OCBC models by defining a
conformance relation between event log and model.

Definition 12 (Conformance). Let OCBCM = (BCM ,ClaM ,AOC , ]�A,
]♦A, ]OC , crel) be an OCBC model, with BCM = (A,C, πref , πtar , type) and
ClaM = (OC ,RT , π1, π2, ]

�
src , ]

♦
src , ]

�
tar , ]

♦
tar ). Let L = (E, act , attr ,EO , om,�)

be an event log.
Event log L conforms to the object-centric behavioral constraint model OCBCM

if and only if:

– There are no Type I problems (validity of object models): for any e ∈ E: object
model OM e = (Obj e,Rele, classe) is valid for ClaM (this includes checking the
�-cardinality constraints that should always hold as stated in Definition 9),

– There are no Type II problems (fulfilment): there is an event ef ∈ De(E) such
that for any e′ ∈ Def(E): OM e = (Obj e,Rele, classe) is also fulfilled (this in-
volves checking the ♦-cardinality constraints that should eventually hold as stated
in Definition 9),

– There are no Type III problems (monotonicity): for any e1, e2 ∈ E such that
e1 ≺ e2: Obj e1 ⊆ Obj e2 and classe1 ⊆ classe2 (objects do not disappear or
change class in-between events).

– There are no Type IV problems (activity existence): {act(e) | e ∈ E} ⊆ A (all
activities referred to by events exist in the behavioral model),

– There are no Type V problems (object existence): for all (e, o) ∈ EO: o ∈ Obj e
(all objects referred to by an event exist in the object model when the event occurs),9

– There are no Type VI problems (proper classes): {(act(e), classe(o)) | (e, o) ∈
EO} ⊆ AOC (events do not refer to objects of unrelated classes).

– There are no Type VII problems (right number of events per object): for any
(a, oc) ∈ AOC , e ∈ E, and o ∈ ∂oc(Obj e):

9 Combined with the earlier requirement, this implies that these objects also exist in later object
models.
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• for any e′ ∈ De(E): |{e′′ ∈ ∂a(Ee′(E)) | (e′′, o) ∈ EO}| ∈ ]�A(a, oc) (each
object o of class oc has the required number of corresponding a events),

• there exists a future event ef ∈De(E) such that for any e′ ∈Def(E): |{e′′ ∈
∂a(Ee′(E)) | (e′′, o) ∈ EO}| ∈ ]♦A(a, oc) (each object o of class oc eventually
has the required number of corresponding a events),

– There are no Type VIII problems (right number of objects per event): for any
(a, oc) ∈ AOC , e ∈ ∂a(E): |{o ∈ ∂oc(Obj e) | (e, o) ∈ EO}| ∈ ]OC (a, oc)
(each event e corresponding to activity a has the required number of corresponding
objects of class oc).

– There are no Type IX problems (behavioral constraints are respected): for each
constraint c ∈ C and reference event eref ∈ ∂πref (c)(E): there exists a future event
ef ∈ E such that for any e′ ∈ Def(E): (|Ceref (Etar )|, |Beref (Etar )|) ∈ type(c)
where
• Etar = {etar ∈ ∂πtar (c)(E) | ∃o∈∂oc(Obje′ )

{(eref , o), (etar , o)} ⊆ EO} if
crel(c) = oc ∈ OC ,

• Etar = {etar ∈ ∂πtar (c)(E) | ∃o1,o2∈Obje′ ({(r, o1, o2), (r, o2, o1)} ∩ Rele′ 6=
∅) ∧ {(eref , o1), (etar , o2)} ⊆ EO} if crel(c) = r ∈ RT .

Any event log L that exhibits none of the nine problems mentioned is conforming
to OCBCM . Therefore, one can argue that Definition 12 provides operational seman-
tics to OCBC models. However, the ultimate goal is not to provide semantics, but to
check conformance and provide useful diagnostics. By checking conformance using
Definition 12, the following four broad classes of problems may be uncovered:

– Type I, II, and III problems are related to the object models attached to the events
(e.g., object models violating cardinality constraints).

– Type IV, V, and VI problems are caused by events referring to things that do not
exist (e.g., non-existing activities or objects).

– Type VII and VIII problems refer to violations of cardinality constraints between
activities and object classes.

– Type IX problems refer to violations of the behavioral constraints (e.g., a violation
of a response or precedence constraint).
The first two categories (Type I-VI problems) types are more of a bookkeeping

nature and relatively easy to understand. The two categories (VII, VIII, IX problems)
are related to the more subtle interplay between activities, objects, relations, and the
behavior over time. These are more interesting, but also quite difficult to understand.
Therefore, we elaborate on Type VII, VIII, IX problems.

Figure 16 shows a situation with problems of Type VII and Type VIII. Object t3
has twee corresponding payment events (p1 and p2), thus violating the “� 0..1” an-
notation. Object t5 has no corresponding payment events, thus violating the “♦ 1”
annotation (assuming there is no corresponding payment in the future). Event p3 has no
corresponding payment events, thus violating the “1..∗” annotation. Note that the object
model is evolving while the process is executed. This is not shown in Figure 16, i.e., the
diagram should be viewed as a snapshot of the process after four payment events.

Figure 17 shows a situation with problems of Type IX. All a2 events should have
precisely one preceding a1 event that is related through relation r. Note that in principle
the object model is evolving, but let us assume that all seven events have the object
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Fig. 16. An illustration of Type VII and VIII problems (all related to violations of cardinality
constraints between activities and object classes).
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Fig. 17. An illustration of Type IX problems. The a1 and a2 events are executed in the order in-
dicated (from left to right). The object model is assumed to remain invariant during the execution
of the events (to simplify the explanation). Constraint c is violated for two of the five reference
events: both e3 and e6 have no corresponding a1 event that occurred earlier.

model shown at the lower part of Figure 17. As stated in Definition 12, there should be
an event ef after which the constraint holds for any event e′ and corresponding object
model OM e′ . Note that the two cases in the last condition of Definition 12 correspond
to the two constraint relations depicted in Figure 10. For each reference event eref , the
corresponding set of target events Etar is determined by following the links through
the object model. For each eref , the cardinalities are checked: (|Ceref (Etar )|, |Beref
(Etar )|) ∈ type(c). Hence, it is possible to identify the reference events for which the
constraint is violated.

For the situation depicted in Figure 17: type(c) = {(before, after) ∈ IN × IN |
before = 1}, i.e., there should be precisely one target (a1) event preceding each refer-
ence (a2) event related through r. Consider e2 = eref as reference event: Etar = {e1}
and target event e1 occurs indeed before e2. Hence, no problem is discovered for e2.
Next we consider e3 = eref as reference event: Etar = {e4}, but target event e4 occurs
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after e3. Hence, e3 has no preceding target event signaling a violation of constraint c
for reference event e3. If we consider e5 = eref as reference event, we find no prob-
lem because Etar = {e1} and target event e1 occurs indeed before e5. If we consider
e6 = eref as reference event, we find again a problem because Etar = ∅, so no target
event occurs before e6. If we consider e7 = eref as reference event, we find no problem
because Etar = {e4} and target event e4 occurs before after e7. Hence, we find two
reference event (e3 and e6) for which constraint c in Figure 17 does not hold.

Definition 12 not only provides operational semantics for the graphical notation
introduced in this paper, but also characterizes a wide range of conformance problems.
Following the classification of problems used in Definition 12, we mention some of the
diagnostics possible (all supported in our implementation).〈TODO: Needs to be refined by Guangming

Li. There is also a mismatch with the tool.
There are lists with 7, 9 and 5 problem types.
See also naming problems in the tool.〉 1. Diagnostics for Type I problems (validity of object models): Display the invalid

object models with the deviating elements. One can know the reason leading to the
invalidity, e.g., �-cardinality constraints that make the object models invalid.

2. Diagnostics for Type II problems (fulfilment): Report ♦-cardinality constraints
that do not hold at the end of the log as well as the deviating elements in the object
model.

3. Diagnostics for Type III problems (monotonicity): Report objects that disappear
or change class over time.

4. Diagnostics for Type IV problems (activity existence): Display the activities ap-
pearing in the log and not in the model as well as the corresponding events in the
event log.

5. Diagnostics for Type V problems (object existence): Present the objects which
are referred to by events and do not exist in the corresponding object models.

6. Diagnostics for Type VI problems (proper classes): Report the events that refer
to classes they should not refer to.

7. Diagnostics for Type VII problems (right number of events per object): Return
each violated AOC relation, i.e., each (a, oc) connection if objects in oc do not
(always/eventually) have the required number of a events. One can see the deviating
objects and their corresponding events for each AOC relation.

8. Diagnostics for Type VIII problems (right number of objects per event): Return
each violated AOC relation, i.e., each (a, oc) connection if a events do not refer to
the specified number of objects in class oc. One can see the deviating events and
their corresponding objects for each AOC relation.

9. Diagnostics for Type IX problems (behavioral constraints are respected): Re-
port the constraints that are violated. List the violated constraints as well as corre-
sponding reference events. Per violated constraint one can view the reference events
and their corresponding target events.

The types diagnostics and checks needed are very different from existing confor-
mance checking approaches. Most of the conformance checking approaches [?,?,?,?,?]
only consider control-flow and are unable to uncover the above problems. Recently,
conformance checking approaches based on alignments have been extended to also
check conformance with respect to the data perspective [?,?]. However, these do not
consider a data model and focus on one instance at a time.
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Constraints may be temporarily violated while the process is running [?,?]. Con-
sider for example a response constraint involving activities a and b: after executing
activity a the constraint is temporarily violated until activity b is executed. This notion
exists in any modeling language where process instances need to terminate and is not
limited to declarative languages. Interestingly, the addition of an object may also cre-
ate temporarily violated and permanently violated constraints. Consider Figure 2 again.
Adding an order line object without creating a corresponding order results in a per-
manent violation. However, adding an order line while also creating an order creates a
cascade of obligations: the obligation to have a delivery object, the obligation to have a
pick item event, and the obligation to have a wrap item event. The corresponding three
“♦ 1” cardinalities are temporarily violated, but can still be satisfied in the future. Im-
plicitly, there is also the obligation to have a corresponding deliver items event in the
future. 〈TODO: Marco: Drop the paper below? Is it

still valid/needed?〉
Interestingly, conformance over OCBC models can be checked very efficiently. In

particular, each of the requirements in Definition 12 can be formalized as a boolean,
SQL-like query over the input log. The final result is obtained by conjoining all the
obtained answers. This means that the data complexity of conformance checking10 is
in AC0. Recall that AC0 is strictly contained in LOGSPACE, and corresponds to the
complexity of SQL query answering over a relational database, measured in the size of
the database only.

7 Implementation

We have implemented the conformance checking approach just described. However,
because we uses models and event logs very different from existing approaches, we
also had to implement an OCBC model editor and develop an infrastructure to man-
age XOC logs. The current implementation supports everything presented in this paper.
All OCBC tools are available as plug-ins for the ProM framework and can be obtained
by downloading ProM from promtools.org and installing the OCBC package us-
ing ProM’s package manager.11 In the remainder, we describe the functionality of the
currently available plug-ins.

The OCBC Model Editor shown in Figure 18 can be used to create, modify, and
view OCBC models. The editor supports all elements mentioned in Definition 11 (class
model, activities, behavioral constraints, activity-class relations, cardinality constraints,
etc.). Figure 18 shows the model used in the introduction (cf. Figure 2). Models can be
imported and exported.

The XOC Log Inspector shown in Figure 19 is used to visualize XOC event logs.
The XOC logs are, just like OCBC models, a new type of object in ProM. The XOC
logging format implements the event log notion defined in Definition 10. XOC logs are
stored in a new XML format.

10 That is, the complexity measured in the size of the log only, assuming that the OCBC model
is fixed.

11 Access http://www.win.tue.nl/ocbc/ for more information, such as tools, manuals, OCBC mod-
els and XOC logs mentioned in this paper.
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Fig. 18. The OCBC model editor and viewer in ProM.
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Fig. 19. ProM Plug-in to inspect XOC logs.
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Fig. 20. The OCBC Conformance Checking plug-in provides an interface to customize problem
types for conformance checking and three conformance views (type view, log view, and model
view) to display the diagnosis.

The OCBC Conformance Checking plug-in implements the different checks de-
scribed in Section 6. The plug-in takes an OCBC model and a XOC event log as input.
The user can select the perspectives to be checked when starting the plug-in. (This step
has been added because some checks are more time-consuming than others.) By select-
ing all perspectives, each of the checks described in Definition 12 is performed. After
all checks have been performed, three views are provided:

1. Diagnostics projected onto the problem types: A high-level summary of the con-
formance problems are found classified in problem types (i.e., Type I-IX in Defini-
tion 12). The display of each problem type (e.g., right number of events per object)
consists of three parts, i.e., the input from the XOC log (e.g., events and corre-
sponding object references) on the left, the input from the OCBC model (e.g., AOC
relations) and the output of the diagnosis result (e.g., violated AOC relations with
deviating objects) in the middle.

2. Diagnostics projected onto the XOC event log: The OCBC Conformance Check-
ing plug-in provides a view similar to the XOC Log Inspector (Figure 19), but now
highlighting problematic events and objects. The events and objects that have prob-
lems get a red border and clicking on these provides a explanation of the problem
(e.g., the constraint violated).

3. Diagnostics projected onto the OCBC model: Problems can also be mapped onto
the OCBC model. A view similar to the OCBC Model Editor (Figure 18) We high-
light the parts of the model where deviations occurred. Clicking on the problem
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provides detailed diagnostics. For example, by clicking on a violated behavioral
constraint the user can see a list of all reference events for which the constraint was
violated.

Figure 20 shows the three views provided by the OCBC Conformance Checking plug-
in. It illustrates that conformance problems can be viewed from different angles. Fig-
ure 21 gives more details about how each view describes the 9 types of diagnosis results.
Note that the type view displays the diagnosis result in a hierarchy structure and each
number in the square annotations, e.g., “(1)”, indicates the hierarchy level of the ele-
ments (e.g., events and objects) after the number. For instance, the annotation on the
top left, i.e., the description about how the type view displays the diagnosis result of
“object existence”, specifies a hierarchy, in which the first level shows deviating events
and the second level shows inexistent objects for each event.
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Fig. 21. The description about how the three conformance views display the 9 types of diagnosis
problems (the square notation corresponding to the type view, the cloud notation corresponding
to the log view, and the ellipse notation corresponding to the model view).
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Next to the plug-ins mentioned there is also a plug-in extracting XOC event logs
from database tables and a plug-in discovering OCBC models from XOC event logs (re-
fer to our paper ”Automatic Discovery of Object-Centric Behavioral Constraint Mod-
els”). We anticipate to develop more plug-ins supporting OCBC models and/or XOC
logs. However, this is outside the scope of this paper where we focus on OCBC confor-
mance checking.

8 Case Study Using Dolibarr ERP/CRM

The conformance checking approach highly depends on the availability of XOC event
logs following the event log notion defined in Definition 10. Such event logs are dif-
ferent from standard XES, MXML, and CSV log files in two respects: (1) there is no
single case notion and (2) each event is related to an object model describing the “state”
of the process. This aligns well with the way that actual information systems work: data
is stored in a database and transaction update the database. As mentioned in the intro-
duction, such information can be obtained from enterprise systems provided by vendors
such as SAP (S/4HANA), Microsoft (Dynamics 365), Oracle (E-Business Suite), and
Salesforce (CRM).

Here we use Dolibarr ERP/CRM to illustrate the feasibility of the approach and
the availability of the data assumed. Dolibarr ERP/CRM is an open source software
package for small and medium companies (www.dolibarr.org). It includes all the
main features of an ERP/CRM suite, except for advanced accountancy functions. For
example, Dolibarr ERP/CRM supports sales, orders, procurement, shipping, payments,
contracts, project management, etc. We use Dolibarr ERP/CRM because it provides an
API that makes it easy to perform controlled experiments. Other open-source Enter-
prise Resource Planning (ERP) systems include Odoo, ERPNext, iDempiere, webERP,
Openbravo, and Opentaps. Dolibarr ERP/CRM is often named as one of the leading
open-source ERP systems and has been downloaded over a million times. It is mostly
used by smaller organizations, foundations, and freelancers.
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Fig. 22. The approach to evaluate the OCBC conformance checking approach and tooling.
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In order to conduct controlled experiments. We used the approach shown in Fig-
ure 22. Given a particular process scenario, we create both a normative OCBC model
with OCBC Model Editor and a simulation model with CPN Tools (cpntools.org).
(See [?,?] for an introduction to modeling using Colored Petri Nets (CPNs) and the
CPN Tools environment.) Through simulating complex process involving multiple in-
teracting entities, we can control the number and type of deviations from the normative
OCBC model, resulting in a simulation log. We interpret the simulation log to automat-
ically operate the Dolibarr ERP/CRM and populate the corresponding database.12 For
example, if an order is created in the simulation and exported in the simulation log, it
is also created in the real system. By running the simulation, the tables of Dolibarr get
filled with information about orders, customers, deliveries, etc. After running Dolibarr
for some time we extract XOC event logs from the database of Dolibarr. The XOC
event logs extracted from Dolibarr and the OCBC model are then loaded into ProM for
conformance checking.

In this paper we do not elaborate on the extraction of XOC event logs from Dolibarr.
Each process requires the selection of the relevant tables. There is no fully automated
way to do this. Knowledge of the ERP system and the process being analyzed are
needed, e.g., the expertise of the system can help us identify activities and the redo
logs can help us reconstruct object models (i.e., historic states of process). This is con-
sistent with current practice in industry. There are several process mining tool vendors
and consultancy firms targeting SAP users. The extraction process is highly repeatable
for the more common SAP processes.13

The approach depicted Figure 22 allows us to check whether the deviations that
are injected can actually be discovered. To illustrate the approach, let us focus on the
order-to-cash process in Dolibarr. We take Figure 23 as the normative model of the
process. The model indicates that there are nine classes and four activities involved in
this process. The ten class relationships (i.e., r1 ∼ r10) reveal the constraints between
classes, e.g., each order line should eventually have a corresponding shipment line indi-
cated by r9 (this is consistent with the real scenario where each order line is eventually
shipped to the corresponding customer). The seven behavioral constraints (i.e., c1 ∼ c7)
present restrictions assigned on the temporal order between events of different activi-
ties. For instance, c6 indicates that each “create order” event is followed by one or more
corresponding “create shipment” events while c7 requires each “create shipment” event
is preceded by precisely one corresponding “create order” event since Dolibarr does
not enable creating shipments covering multiple orders. The eight AOC relations (i.e.,
1 ∼ 8 ) specifies the cardinaltiy constraints between activities and classes. For exam-

ple, 5 shows a one-to-one correspondence between “create order” events and “order”
objects, i.e., if an “order” object is observed, the corresponding “create order” activity
needs to be executed once and vice versa.

Based on the normative model, we can add deviating behavior into normal behavior
and check whether this is picked up. In our approach, deviations can be added by two
methods:

12 More information is at http://www.win.tue.nl/ocbc/softwares/data generation.html.
13 An approach for extraction is at http://www.win.tue.nl/ocbc/softwares/log generation.html.
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Fig. 23. The normative OCBC model of the order-to-cash process in Dolibarr.

– Adding deviation paths into the simulation model. This method is used to add de-
viations on the model level. More precisely, we can model the deviating behavior
as a path violating the normative model. For instance, we can add a alternative path
which can skip the activity “create shipment” when some attributes of orders satisfy
predefined rules. This method generates normal behavior and deviating behavior at
the same time when the model is simulated, which enable generating large numbers
of deviations.

– Adding deviating behavior manually on the real system. This method is used to add
deviations on the instance level, i.e., operating the real system deliberately violating
the the normative scenario. For instance, after creating an order, we never create
shipments for this order. This method make it possible to intertwine the simulated
data with real behavior, i.e., we create the normal behavior through simulate the
model and insert deviations on the real system.
In our experiments, we employ the second method to add typical deviations which

may really happen in daily transactions. Since OCBC models cover the the behavioral
perspective, the data perspective and the interactions between two perspectives, we cre-
ate deviations of three categories accordingly.

– Deviations related to the behavioral perspective. Like other modeling language
such as Petri nets, OCBC models supports checking conformance on the behavioral
perspective. In the normal scenario, each “create order” event is followed by at
least one “create invoice” event, indicated by the constraint c4. In the experiment,
we add a deviation violating c4, i.e., an “create order” event is never followed by
corresponding “create invoice” events.

– Deviations related to the data perspective. A challenge for detecting behavioral
deviations is that how to detect implicit deviations. For instance, an “create or-
der” event has corresponding “create shipment” events but does not have sufficient
ones, i.e., order lines created by the “create order” event do not totally be shipped
to customer. This implicit deviation is indeed violating our scenario but satisfy the
behavioral constraint (i.e., c6, which requires a one-to-many relation between “cre-
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ate order” events and “create shipment” events). Since OCBC models have a data
perspective, it is possible to transform such implicit deviations onto the data per-
spective. For example, the deviation mentioned above can be interpreted as some
order lines have no corresponding shipment lines, and be detected through checking
the cardinality constraints on the class relationship r9.

– Deviations related to the interactions between two perspectives. In the Dolibarr
system, when an invoice is created, it is normally linked to one or more existing
orders. As a result, one or more element relations (showing the correspondence
between the invoice and the orders) are created when an “create invoice” event
happens, which is indicated by the cardinality “1..*” of the AOC relation 3 . In
reality, a common deviating situation is that one forgets to link one invoice to any
orders. In our experiment, we mimic this situation, i.e., create an invoice without
any element relations, resulting in a deviation violating the constraints (i.e., “1..*”
of 3 ) on the interactions of two perspectives.

(5) indicating some 
“order_line” objects 

(i.e., “order_line734”) 
eventually have no 

corresponding 
“shipment_line” objects

(4) indicating some “invoice” objects have 
no corresponding “payment_line” objects(1)

(2)

(5) indicating some “invoice” objects have no 
corresponding “oi_element_element” objects

(3) indicating some 
“create_invoice” events 
have no corresponding 
“oi_element_element” 

objects

Fig. 24. Needs to be a replaced by a more realistic scenario.

Taking an XOC log with the deviations illustrated above and the normative OCBC
model as input, we use the “OCBC Conformance Checking” plug-in to check the con-
formance between the log and the model and the result is shown in Figure.
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9 Conclusion

In this paper, we proposed Object-Centric Behavioral Constraint (OCBC) models as a
means to graphically model control-flow and data/objects in an integrated manner. Car-
dinality constraints are used to specify structure and behavior in a single diagram. In
existing approaches, there is often a complete separation between data/structure (e.g.,
a class model) and behavior (e.g., BPMN, EPCs, or Petri nets). In OCBC models, dif-
ferent types of instances can interact in a fine-grained manner and the constraints in the
class model guide behavior.

OCBC models are particularly suitable for conformance checking. Many deviations
can only be detected by considering multiple instances and constraints in the class
model. In this paper, we identified nine types of conformance problems that can be
detected using OCBC models.

This paper also presented three ProM plug-ins supporting OCBC models and the
corresponding XOC event logs. These serve as a proof-of-concept. All types of devia-
tions described in this paper can be detected automatically using our software. More-
over, the paper illustrates that the data needed for such checks are available in to-
day’s information systems. Several experiments were conducted using Dolibarr. This
open-source ERP/CRM system has the type of information typically found in other
ERP/CRM systems. In order to perform controlled experiments, CPN Tools was used
to control Dolibarr via an API. By using simulation we could play different scenarios on
the actual ERP/CRM and inject deviations. The OCBC Conformance Checker plug-in
was able to detect all such deviations and provide adequate diagnostics.

This paper serves as a starting point for a new line of research. In fact, there are
many possible avenues of future work.

We already started working on the discovery of OCBC models from event logs. The
initial results look very promising.

We would also like to improve the performance of the current conformance check-
ing tools. Obviously, it is sufficient to just store the object references and updates in the
event log. This will make the approach much better scalable. Because constraints can
be checked separately, there are different approaches possible to further improve per-
formance. However, the focus of the current was was on functionality rather than per-
formance, i.e., answering questions that cannot be answered using existing approaches.

We also want to identify typical behavioral (anti-)patterns that involve multiple in-
stances or interaction between structure and behavior. Figure 25 shows an example
pattern. Along this line, we plan to study the effect of introducing subtyping in the data
model, a constraint present in all data modeling approaches. The interplay between be-
havioral constraints and subtyping gives rise to other interesting behavioral patterns. For
example, implicit choices may be introduced through subtyping. Consider a response
constraint pointing to a payment class with two subclasses credit card payment and cash
payment. Whenever the response constraint is activated and a payment is expected, such
an obligation can be fulfilled by either paying via cash or credit card.

Finally, we also want to investigate how the notions of consistency and constraint
conflict/redundancy, well-known in the context of Declare [?], and the corresponding
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Fig. 25. Example pattern. After start-
ing the parent, all k children (as de-
fined by r1) need to start. After all k
children ended, the parent ends.

end parent end child

childparent
1 1..*

1

1 1

1

r1

c1

start parent1

1

start child
c2

c3

c4

1

1

notions of consistency and class consistency, well-known in data models [?], can be
suitably reconstructed and combined in our setting.


