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1 About LoLA

Abstract

LoLA (a Low Level Petri Net Analyzer) has been implemented for the validation of reduction
techniques for place/transition net state spaces. Its particular strengths include
• A large number of available state space reduction techniques many of which may be applied

jointly;
• A high degree of automation for various state space reduction techniques
• Availability of dedicated variations of state space reduction techniques for several frequently

used properties
• efficient implementation exploiting the particular nature of Petri net models
• simple textual interaction for easy integration into other tools

LoLA has been tested on several UNIX platforms (FreeBSD, Solaris), Linux, as well as under
Windows using the CYGWIN environment.

1.1 Selected Case Studies

The following list gives a short summary of some case studies involving the use of LoLA.
• Verification of a GALS (globally asynchronous locally synchronous system) wrapper
• Validation of a Petri Net Semantics for WS-BPEL (Web Service Business Process Execution

Language)
• Verification of WS-BPEL choreographies
• Garavel’s challenge in the Petri Net Mailing List
• Exploration of biochemical networks

1.1.1 Verification of a GALS wrapper

A GALS circuit is a complex integrated circuit where several components operate locally syn-
chronously but exchange information asynchronously. GALS technology promises lower energy
consumption and higher clock frequency.
In a joint project, researchers at Humboldt-Universität zu Berlin and the Semiconductor Re-
search Institute in Frankfurt/Oder analysed a GALS circuit that implements a device for cod-
ing/decoding signals of wireless LAN connections according to the 802.11 protocol. They were
particularly concerned with parts of the circuit they called wrapper. A wrapper is attached
to each synchronous component of a GALS circuit. It is responsible for managing the asyn-
chronously incoming data, pausing the local clock in case of no pending data, and shipping
the outgoing signals to the respective next component. They modeled a wrapper as a place-
transition net and analysed the occurrence of hazard situations. A hazard is a situation where,
according to two incoming signals within a very short time interval, output signals may assume
undefined values. In the model, a hazard situation corresponds to a particular reachable state
predicate. LoLA was used with stubborn sets and the sweep-line method as reduction tech-
niques. Analysis revealed eight hazard situations in the model. Six of them were ruled out by
the engineers due to timing constraints which were not modeled. The remaining two hazards
were confirmed as real problems. The circuit was redesigned and another verification confirmed
the absence of hazard situations.
More information:

• Milos Krstic, Eckhard Grass, and Christian Stahl. Request-Driven GALS Technique for
Wireless Communication System. In Proceedings of the 11th International Symposium on
Advanced Research in Asynchronous Circuits and Systems (ASYNC 2005), New York, NY,
USA, pages 76-85, March 2005. IEEE Computer Society.
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1.1.2 Validation of a Petri Net Semantics for WS-BPEL

The language WS-BPEL has been proposed by an industrial consortium for the specification
of web services. Researchers at Humboldt-Universität zu Berlin proposed a formal semantics
for WS-BPEL on the basis of high-level Petri nets (with a straightforward place-transition net
abstraction that ignores data dependencies). Due to tricky concepts in the language, the trans-
lation of WS-BPEL into Petri nets required a validation. The validation was carried out through
an automated translation of WS-BPEL into Petri nets and a subsequent analysis of the resulting
Petri nets using LoLA. LoLA was used with stubborn sets and the sweep-line method as most
frequently used reduction techniques.

More information:

• Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming BPEL to Petri Nets.
In Wil M. P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Proceedings of
the Third International Conference on Business Process Management (BPM 2005), volume
3649 of Lecture Notes in Computer Science, Nancy, France, pages 220-235, September 2005.
[DOI]

1.1.3 Verification of WS-BPEL choreographies

The language WS-BPEL has been proposed by an industrial consortium for the specification of
web services. Researchers at Humboldt-Universität zu Berlin developed a tool for translating
WS-BPEL processes and choreographies into place-transition nets. LoLA has been used for
checking several properties on the choreographies. They used stubborn sets and the symmetry
method. The latter method turned out to be useful in those cases where choreographies involved
a large number of instances of one and the same process. This way, choreographies with more
than 1000 service instances could be verified.

More information:

• Niels Lohmann, Oliver Kopp, Frank Leymann, and Wolfgang Reisig. Analyzing
BPEL4Chor: Verification and Participant Synthesis. In Marlon Dumas and Reiko Heckel,
editors, Web Services and Formal Methods, Forth International Workshop, WS-FM 2007,
Brisbane, Australia, September 28-29, 2007, Proceedings, volume 4937 of Lecture Notes in
Computer Science, pages 46-60, 2008. Springer-Verlag. [DOI]

1.1.4 Garavel’s challenge in the Petri Net Mailing List

In 2003, H. Garavel posted a place/transition net to the Petri net mailing list. It consisted
of 485 places and 776 transitions. He was interested in quasi-liveness, i.e. the absence of any
transition that is dead in the initial marking. According to the posting, the example stems from
the translation of a LOTOS specification into Petri nets. There were four responses reporting
successful verification. One of them involved LoLA. With LoLA, we checked each transition
separately for non-death. We succeeded for all but two transitions. For the remaining transitions,
goal-oriented execution confirmed non-death. According to the other responses which involved
either symbolic (BDD (binary decision diagram) based) verification or the use of the covering
step graph technique, the full state space consisted of almost 1022 states.

More information:

• The original posting
• The summary of responses

1.1.5 Exploration of biochemical networks

A biochemical network reflects substances and known reactions for their mutual transformation.
Researchers at SRI use LoLA in the exploration of Petri net models of such networks. They use
the capability of LoLA to produce witness paths which are interpreted as reaction sequences.

http://dx.doi.org/10.1007/11538394_15
http://dx.doi.org/10.1007/978-3-540-79230-7_4
http://www.informatik.uni-hamburg.de/cgi-bin/TGI/pnml/getpost?id=2003/07/2709
http://www.informatik.uni-hamburg.de/cgi-bin/TGI/pnml/getpost?id=2003/09/2736
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1.2 Integration

LoLA has been integrated into various other tools.
• The Petri Net Kernel
• The Model Checking Kit
• CPN-AMI

http://www2.informatik.hu-berlin.de/top/pnk/
http://www.fmi.uni-stuttgart.de/szs/tools/mckit/
http://move.lip6.fr/software/CPNAMI/index.html
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2 Net File Format

In LoLA, the Petri net to be analysed needs to be provided in textual representation. LoLA sup-
ports place-transition nets and high-level nets in the shape of an interpreted algebraic Petri net.
A place-transition net description starts with the keyword ‘NET’, followed by the specification of

• places
• the initial marking
• transitions and arcs

A high level net description starts with the keyword ‘SPECIFICATION’, followed by the definition
of

• sorts (data domains)
• operations

The defined symbols can be used in the actual net description which is subsequently provided
using the keyword ‘NET’, followed by the specification of

• places
• the initial marking
• transitions and arcs

2.1 Basics

2.1.1 Identifiers

The rules for building identifiers in LoLA are quite liberal. This way, it should be easy to
translate various file formats into LoLA format. Basically, every string of printable characters
that does not contain any of the following characters is an identifier: ,, ;, :, (, ), {, }

Exceptions from this rule are numbers and the following reserved strings:

RECORD, END, SORT, FUNCTION, SAFE, DO, ARRAY, STRONG, WEAK, FAIR, ENUMERATE, CONSTANT,
BOOLEAN, OF, BEGIN, WHILE, IF, THEN, ELSE, SWITCH, CASE, NEXTSTEP, REPEAT, FOR, TO, ALL,
EXIT, EXISTS, RETURN, TRUE, FALSE, MOD, VAR, GUARD, STATE, PATH, GENERATOR, ANALYSE,
PLACE, TRANSITION, MARKING, CONSUME, PRODUCE, FORMULA, EXPATH, ALLPATH, ALWAYS, UNTIL,
EVENTUALLY, AND, OR, NOT, <->, <>, ->, =, [, ], ., +, -, *, /, :, ;, |, (, ), ,, >, <, #, >=, <=� �
Examples:

p1
|||=
helloworld
[]....8[[[
 	
Identifiers must be separated from other parts of the net file specification using white space
characters. White space characters include the blank, newline, and tab characters as well as
comments. A comment in LoLA is any text between a pair of curling brackets ‘{’, ‘}’ on the
same line.� �
Example:

{ A { comment }
 	
Future versions of LoLA may have additional reserved words. New reserved words shall, however,
always consist of capital letters only.
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2.1.2 Numbers

Every sequence of digits, separated by white space (blank, tab, newline, or comment, i.e. text
enclosed in curling brackets ‘{’, ‘}’), is a number. LoLA does not have a concept of signed
numbers.� �
Example:

0
11
0001117
 	
2.2 File Format for Place/Transition Nets

2.2.1 Places

In LoLA, every place is represented as a unique name. The name can be an identifier according
to the general rules for building identifiers or a number. The set of places is specified by the
keyword ‘PLACE’, followed by a list of sections. Each section starts with a capacity specification
and is followed by a comma-separated list of the places names, finished by a ‘;’. The capacity
statement may by empty or consist of the keyword ‘SAFE’, optionally followed by a number. Us-
ing ‘SAFE’ without number is equivalent to the specification ‘SAFE 1’. If the file ‘userconfig.H’
contains the directive ‘#CAPACITY k ’, an empty capacity specification is equivalent to the spec-
ification ‘SAFE k ’. Otherwise, an empty specification represents an unbounded capacity (which
is internally approximated by a capacity of 232). A capacity statement specifies the maximum
number of tokens expected on the places which are specified subsequently. LoLA uses the capac-
ity statement only for a compact representation of markings. The firing rule is not effected by
the capacity specification. Optionally, the validity of the capacity specifications can be checked
during state space generation. For this purpose, the directive ‘CHECKCAPACITY’ must be active
in the file ‘userconfig.H’.� �
Example:

PLACE SAFE p1, 17, helloworld, p[]....8[[[;
p2 , p3 ; SAFE 7 : p4 , p5;

specifies 8 places. Places ‘p1’, ‘17’, ‘hellworld’, ‘p[]....8[[[’ are expected to never contain
more than 1 token. Places ‘p2’, ‘p3’ have either unknown bound (without ‘#CAPACITY’ in
‘userconfig.H’), or the bound specified in ‘userconfig.H’. Places ‘p4’ and ‘p5’ are expected
to contain at most 7 tokens.
 	
2.2.2 Initial Marking

The initial marking of the net is specified in a separate section starting with the keyword
‘MARKING’ and finished by a ‘;’. In between, there is a comma-separated list. Each list item
consists of a place name, a ‘:’, and a number. The number specifies the number of tokens
initially being on the mentioned place. Places which are not mentioned get 0 tokens initially.
For places mentioned more than once, the specified token counts are summed up.� �
Example:

MARKING p1 : 13, p2 : 3 , p1 : 4 ;

assigns 17 tokens to place ‘p1’, 3 tokens to place ‘p2’, and 0 tokens to any other place in the net.
 	



Chapter 2: Net File Format 6

2.2.3 Transitions and Arcs

In LoLA, there is, for each transition, a distinguished section for defining that transition and all
connecting arcs. The section starts with the keyword ‘TRANSITION’ followed by the name of the
transition. This name may be built general rules for building identifiers or a number.

Then, optionally, a fairness assumption ‘WEAK FAIR’ or ‘STRONG FAIR’ may be specified. The
assumptions are effective only for the verification of a few properties. A transition is treated
weakly unfair in an infinite transition sequence iff it is, from some point in the sequence, per-
manently enabled but never fired. It is treated strongly unfair iff it is infinitely often enabled
but only finitely often fired.

After that, the list of incoming arcs is specified. This part starts with the keyword ‘CONSUME’
and ends with a ‘;’. Between these symbols, there is a comma-separated list of arc specifications.
Each arc specification consists of a place name, a ‘:’, and a number. It represents an arc from the
mentioned place to the currently specified transition. The number represents the multiplicity of
the arc.

Finally, the list of outgoing arcs is specified. This part starts with the keyword ‘PRODUCE’ and
ends with a ‘;’ Between these symbols, there is a comma-separated list of arc specifications.
Each arc specification consists of a place name, a ‘:’, and a number. It represents an arc from
the currently specified transition to the mentioned place. The number represents the multiplicity
of the arc.� �
Example:

TRANSITION t1 WEAK FAIR
CONSUME p1 : 2 , p2 : 4 ;
PRODUCE p1 : 2 , p3 : 2 ;

is a transition which is to be treated weakly fair for some properties. It tests ‘p1’ for the presence
of 2 tokens, removes 4 tokens from ‘p2’, and puts 2 tokens onto p3.
TRANSITION t2
CONSUME p1 : 1 ;
PRODUCE ;

may be treated unfair. It removes a token from ‘p1’ and does not put tokens anywhere.
 	
2.3 File Format for High Level Nets

2.3.1 Sorts

Sorts represents domains for tokens on places. A sort name can be buit according to the general
rules for building identifiers. The set of sorts is specified by the keyword ‘SORTS’, followed by
a list of sort definitions. Each definition consists of a sort name, a ‘:’, and a sort description
which ends with a ‘;’. The following descriptions are available:

• the description ‘BOOLEAN’ with values ‘TRUE’ and ‘FALSE’;� �
Example:

s1 = BOOLEAN ;
 	
• an interval of natural numbers, specified as a comma-separated pair of numbers, enclosed

in brackets ‘[’ and ‘]’. The description represents all values which are natural numbers
greater or equal to the left number, and less or equal to the right number.
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Example:

s3 = [ 3 , 7 ] ;
 	
• the keyword ‘ENUMERATE’, followed by a white space separated list of identifiers and the

keyword ‘END’. Each identifier represents a distinguished value.� �
Example:

s4 = ENUMERATE
blue white red

END ;
 	
• the keyword ‘ARRAY’ followed by a scalar sort description, the keyword ‘OF’, and another

arbitrary sort description. The description represents arrays (vectors) where the first sort
description represents the set of indices while the second sort description represents the
values of components. Any of the sort descriptions mentioned in the first four items of this
list are scalar while the remaining two are not.� �
Example:

s5 = ARRAY s2 OF [ 1 , 3 ];
 	
• The keyword ‘RECORD’ followed by a list of component definitions, finished by the keyword

‘END’. A component definition consists of an identifier, a ‘:’, and a sort description. A
record description represents cross products of values where each component represents one
dimension of the cross product.� �
Example:

s6 = RECORD
r1 : BOOLEAN;
r2 : ARRAY [ 1 , 3 ] OF s2

END ;
 	
• any previously specified sort name; represents the description of the mentioned sort.� �

Example:

s2 = s1 ;
 	
LoLA considers a canonical ordering on each set of values that can be described by a sort
description. The ordering is defined as follows:

• for ‘BOOLEAN’: ‘FALSE’ < ‘TRUE’;

• for intervals: the usual ordering on the natural numbers;

• for enumerations: ascending according to appearance in the description; for arrays: for the
smallest index where both values differ, the corresponding component determines the order;

• for records: the values of the first differing components (in order of definition) determine
the order.

• According to these rules, there are a unique least element, a unique largest element, and a
canonical order of enumeration of all values of a sort description.

Every value of a sort description has a text representation.

• The text representations of the boolean constants are ‘TRUE’ and ‘FALSE’;
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Example:

TRUE
 	
• The text representation of a number is the decimal ASCII representation of that number;� �

Example:

42
 	
• The text representation of an enumerated value is the ASCII representation of that value;� �

Example:

red
 	
• The text representation of a value of an array is a ‘|’-separated list of the component values,

in ascending order of their index, enclosed in brackets;� �
Example:

[1|5|7|3]
 	
• The text representation of a value of a record is a ‘|’-separated list of the values of the

record components (in the order of definition), enclosed in ‘<’ and ‘>’.� �
Example:

<1|TRUE|[1|2|5]|red>
 	
The text representation is used in the translation from a high-level net to a low-level net.

For sorts, several compatibility rules apply:

• Every sort is compatible to itself and renamings.
• All integer sorts are compatible to each other
• Two ‘ARRAY’ types are compatible if their component sorts are compatible and their index

sorts represent the same number of values
• Two record types are compatible if they have the same number of components, and the

components have pairwise compatible sorts (in the order of specification of the components).

2.3.2 Operations

Operations represent mappings between sorts. The specification of an operation consists of an
operation symbol which can later on be used in terms, a typing which controls the construction
of terms, and a meaning which is basically a side-effect free program.

The specification of an operation starts with the keyword ‘FUNCTION’. It follows, enclosed in
parenthesis, the specification of argument typing and, separated by a ‘:’, the specification of
a return type. The specification of argument type may be empty or a ‘;’-separated list. Each
entry in the list is formed by a comma-separated list of identifiers, followed by a ‘:’ and a
sort description. The return type is a sort description. Each identifier represents an argument
of the specified function. The order of arguments corresponds to the order of appearance of
the respective identifiers. The identifiers for the arguments are used in the description of the
meaning of the operation.

The specification of the meaning of an operation consists of a declaration part and a statement
which is enclosed in the pair ‘BEGIN’ and ‘END’ of keywords. The declaration part consists of
the keyword ‘VAR’ and a ‘;’-separated list of declarations. Each declaration consists of a ‘,’-
separated list of identifiers, a ‘:’, and a sort description. Each declared variable represents a
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value which is, upon each execution of the subsequent statement, initialized with the least value
of its sort.

The meaning of an operation defines a mapping from the cross-product of domains which are
represented by the argument sorts, to the of the data domain represented by the return type.
A statement can have any of the following shapes where ‘S1 ’ and ‘S2 ’ are substatements, ‘X ’ is
a declared variable or represents an argument, ‘E ’, ‘E1 ’, ‘E1 ’, . . . , are expressions, and ‘L ’ is a
left value.

EXIT

finish execution and return the multiset of values collected so far

RETURN E

evaluate expression ‘E ’ and add the resulting value to the collection of values to be
returned; continue execution!

L = E

replace the value of ‘L ’ with the result of evaluating expression ‘E ’

S1 ; S2

execute first statement ‘S1 ’ and then statement ‘S2 ’

WHILE E DO S1 END
perform a loop that consists of evaluating expression ‘E ’ (of sort ‘BOOLEAN’) first,
and then executing ‘S1 ’. Leave the loop as soon as ‘E ’ evaluates to ‘FALSE’

REPEAT S1 UNTIL E END
perform a loop that consists of executing ‘S1 ’ first and then evaluating expression
‘E ’ (of sort ‘BOOLEAN’). Leave the loop as soon as ‘E ’ evaluates to ‘TRUE’

FOR X := E1 TO E2 DO S1 END
execute ‘S1 ’ once for each value of scalar expression ‘X ’ between the value of expres-
sion ‘E1 ’ and the value of expression ‘E2 ’

FOR ALL X DO S1 END
perform ‘S1 ’ for each value in the domain of the sort of ‘X ’, in the canonical order
of that domain

IF E THEN S1 END
execute ‘S1 ’ if evaluation of ‘E ’ yields ‘TRUE’

IF E THEN S1 ELSE S2 END
execute ‘S1 ’ if evaluation of ‘E ’ yields ‘TRUE’, otherwise execute ‘S2 ’

SWITCH E CASE E1 : S1 CASE E2 : S2 ... ELSE S END
Evaluate expression ‘E ’ and execute the first statement ‘Si ’ where ‘Ei ’ has the same
value as ‘E ’. If no expresion matches, execute ‘S ’. The part ‘ELSE S ’ is optional. If
it is absent, nothing is executed in a situation where no case expression matches.

All used variables must be declared as arguments or in the declarations section. There are no
variables or side-effects. Wherever variables, expressions, or left values occur, attached sorts
must be compatible. When integer values (or arrays, records having integer components) are
assigned, they are aligned to the target sort. That is, we add or subtract the size of the target
interval iteratively until the resulting value fits in the target domain.
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Example:

FUNCTION allelements() : s
{ returns all elements of domain s }
VAR

x : s ;
noprime : ARRAY [ 2 , 10000 ] OF BOOLEAN { initially all entries FALSE }

BEGIN
FOR ALL x DO

RETURN x
END

END
 	� �
Example:

FUNCTION allprimesuntil(n : [ 2 , 10000 ] ) : [2 , 10000]
{ returns all prime numbers until n which is expected to be less or equal to 10000 }
VAR

x , y : [ 2 , 10000 ] ;
noprime : ARRAY [ 2 , 10000 ] OF BOOLEAN { initially all entries FALSE }

BEGIN
FOR x = 2 TO n DO
IF NOT noprime[ x ] THEN

RETURN x
y = x
WHILE x * y <= n DO
y = y * x ;
noprime [ y ] = TRUE

END
END

END
END
 	� �
Example:

FUNCTION iscontained(x : s ; a : ARRAY i OF s ) : BOOLEAN
{ returns TRUE iff x occurs in a }
VAR

y : i ;
BEGIN

FOR ALL y DO
IF a [ y ] = x THEN

RETURN TRUE
EXIT

END
END
RETURN FALSE

END
 	
2.3.3 Expressions and Left Values

Expressions can be used in the descriptions of the meaning of operations, in transition guards,
and in the specification of state predicates and CTL formulas. An expression represents a single
value that may depend on arguments of the operation and values of variables.
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Expressions can be built according as follows (‘E1’ and ‘E2’ are subexpressions):

• Left values: A variable is an expression. The current value of the variable forms the value
of the expression. Its sort is the sort of the variable (specified in the variable declaration.
If ‘L’ is a left value of an array sort, and ‘E’ an expression of the corresponding index type,
then ‘L [ E ]’ is an expression, too. Its sort is the component sort of the array sort, its value
is the i-th component of the value of ‘L’ if ‘E’ evaluates to the ith element of its sort. If ‘L’
is a left value of a record type, and bla one of its components, then ‘L . bla’ is a left value.
Its value is the corresponding component of the value of ‘L’, its sort is the sort specified for
component bla.

• Numbers, symbols of an enumeration type, the keywords ‘TRUE’ and ‘FALSE’ are expressions.
There value corresponds to the depicted item. The type is integral, an enumeration type
(the one that mentions the item), or ‘BOOLEAN’, resp.

• Logical connectives: If ‘E1’ and ‘E2’ are expressions of type ‘BOOLEAN’, so are ‘E1 <-> E2’,
‘E1 -> E2’, ‘E1 AND E2’, ‘E1 OR E2’, and ‘NOT E1’. The value is the logical “if and only if”,
“implies”, conjunction, disjunction, or negation (resp.) of the values of the subexpressions.

• Comparisons: If ‘E1’ and ‘E2’ are expressions, then ‘E1 < E2’, ‘E1 > E2’, ‘E1 <= E2’, ‘E1 >=
E2’, ‘E1 = E2’, ‘E1 <> E2’, and ‘E1 # E2’ are expressions of type ‘BOOLEAN’. If the sorts of
‘E1’ and ‘E2’ are incompatible, all comparisons except ‘<>’ and ‘#’ evaluate to ‘FALSE’.
Otherwise, the comparisons represent the usual relations less than, greater than, less or
equal, greater or equal, equal, inequal, and an alternative representation of inequal. For
scalar sorts, the comparisons are evaluated according to the canonical order of values.
For Arrays, and Records, the comparison return ‘TRUE’ iff it returns true for all pairwise
comparisons of the components.

• Arithmetic operations: If ‘E1’ and ‘E2’ are expressions of an integral sort, or arrays or records
thereof, then ‘E1 + E2’, ‘E1 - E2’, ‘E1 * E2’, ‘E1 / E2’, ‘E1 MOD E2’, and ‘- E1’ are expressions
of the same sort as well. Values correspond to the addition, subtraction, multiplication,
division, remainder, and sign change operations, resp. For arrays or records, the operation
is performed component-wise.

• Parenthesis: If ‘E’ is an expression, so is ‘( E )’. This way, operation precedence can be
controlled.

• Aggregation: If ‘E1’,. . . , ‘Ek’ are expressions with compatible sort, then ‘[ E1 | E2 ... | Ek
]’ is an expression of sort ‘ARRAY [1 , k ] OF’ that sort. Its components get value according
to the values of ‘E1’,. . . , ‘Ek’.

• Function call: If ‘bla’ is an operation with k arguments and return sort ‘s’, ‘E1’,. . . , ‘Ek’
expressions compatible to the corresponding argument sorts of bla, then ‘bla(E1,...,Ek)’
is an expression of sort ‘s’. Its value is the value returned by executing the meaning of
‘bla’, with argument values set to the values of ‘E1’,. . . , ‘Ek’. If ‘bla’ returns 0 or more
than 1 value, LoLA terminates with a run-time error.� �

Examples:

[ TRUE | TRUE | FALSE | FALSE ] <-> [ TRUE | FALSE | TRUE | FALSE ]

evaluates to
[ TRUE | FALSE | FALSE | TRUE ]

and
[ 1 | 2 ] * [ 2 | 3 ]

evaluates to
[ 2 | 6 ]
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2.3.4 Terms and Multiterms

Terms represents combinations of defined operations, that is, mappings between domains which
are specified as sorts.
A Term is a variable (which must be declared in the context of the term occurrence, or an
operation symbol with a comma-separated list of (sub-)terms, enclosed in parenthesis. The
number of subterms must fit to the number of specified arguments for the operation.
If a term is a variable, its sort that has been attached to the variable in its declaration. If a
term is an operation, its sort is the specified return domain of the operation. Each subterm
must have a sort that is compatible with the sort of the corresponding argument in the top-level
operation.
Given a value for each variable that occurs in a term, a term can be evaluated to a multiset of
values from the domain that is represented by its sort. If subterms evaluate to multisets, the
top-level term is evaluated for each combination of values of the subterms and the results are
summed up (using multiset addition).
Assume that ‘all()’ evaluates to the multiset ‘[1,2,3]’, ‘x’ has value 2, ‘even(1)’
= ‘even(3)’ = ‘FALSE’, and ‘even(2)’ = ‘TRUE’. Let ‘cross(x,y)’ evaluate to a
‘RECORD’ with component a taking value ‘x’ and component ‘b’ taking value ‘y’.
‘even(all())’ evaluates to ‘[2 FALSE, TRUE ]’, ‘cross( all(), all())’ evaluates to
‘[<1|1>,<1|2>,<1|3>,<2,1>,<2,2>,<2,3>,<3,1>,<3,2>,<3,3>]’, and ‘even(x)’ evaluates
to ‘[TRUE]’.
A multiterm can be a term, a term followed by a ‘:’ and a number k, or two multiterms with
enclosed ‘+’. A multiterm evaluates to a multiset that corresponds to the evaluation of the
denoted term, the multiset where each element occurs k time as often as in the specified term,
or the multiset where the occurrence of each element corresponds to the sum of its occurrences
in the two involved multiterms, resp.� �
Example:

even(twotimesthree()):3 + even(one()) + even(two()):5

evaluates to the multiset that assigns 7 to ‘FALSE’ and 5 to ‘TRUE’, under the assumption that
‘even(twotimesthree())’ evaluates to ‘TRUE’ occurring twice, ‘even(one())’ evaluates to a
single occurrence of ‘FALSE’, and ‘even(two())’ evaluates to a single occurrence of ‘TRUE’.
 	
2.3.5 Places

In LoLA, every place is represented as a unique name. The name can be an identifier according
to the general rules for building identifiers or a number. The set of places is specified by the key-
word ‘PLACE’, followed by a list of sections. Each section starts with a capacity specification and
is followed by a comma-separated list, finished by a ‘;’. Each entra in the list consists of a place
name, a ‘:’, and a sort name. The sort name specifies the data domain for tokens on the men-
tioned place. The capacity statement may by empty or consist of the keyword ‘SAFE’, optionally
followed by a number. Using ‘SAFE’ without number is equivalent to the specification ‘SAFE 1’.
If the file ‘userconfig.H’ contains the directive ‘#CAPACITY k ’, an empty capacity specification
is equivalent to the specification ‘SAFE k ’. Otherwise, an empty specification represents an un-
bounded capacity (which is internally approximated by a capacity of 232). A capacity statement
specifies the maximum number of tokens of a particular value expected on the places which are
speficied subsequently. LoLA uses the capacity statement only for a compact representation of
markings. The firing rule is not effected by the capacity specification. Optionally, the validity
of the capacity specifications can be checked during state space generation. For this purpose,
the directive ‘CHECKCAPACITY’ must be active in the file ‘userconfig.H’. The specification of
HL-net places may be arbitrarily mixed with the specification of place/transition net places.
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This option must, however, be used with care as LoLA translates every HL net place into a set
of place/transition net places. Every resulting place has a name that consists of the name of the
HL Net place, a ‘.’, and a text representation of a value. LoLA does not avoid resulting name
clashes with specified place/transition net place names.� �
Example:

PLACE SAFE p1 : phil, 17 : phil, helloworld, p[]....8[[[ : bla;
p2 : bla , p3 : bla; SAFE 7 : p4 : bla , p5;

specifies 8 high level places. Places ‘p1’, ‘17’ contain tokens of sort (domain) ‘phil’, places
‘helloworld’ and ‘p5’ are in fact low level places, i.e. they contain black tokens. The remaining
places contain tokens of sort (domain) ‘bla’. Places ‘p1’, ‘17’, ‘hellworld’, ‘p[]....8[[[’ are
expected to never contain more than 1 token per value. Places ‘p2’, ‘p3’ have either unknown
bound (without ‘#CAPACITY’ in ‘userconfig.H’), or the bound specified in ‘userconfig.H’.
Places ‘p4’ and ‘p5’ are expected to contain at most 7 tokens.
If sort ‘bla’ is defined as ‘bla = [ 1 , 3 ] ;’ then LoLA will internally consider places ‘p2.1’,
‘p2.2’, ‘p2.3’, ‘p3.1’ and so on.
 	
2.3.6 Initial Marking

The initial marking of the net is specified in a separate section starting with the keyword
‘MARKING’ and finished by a ‘;’. In between, there is a comma-separated list. Each list item
consists either of a low level place name, a ‘:’, and a number, or a high level place name, a ‘:’,
and a multiterm of the sort which is specified for the corresponding place. The number specifies
the number of tokens initially being on the mentioned low level place. The multiterm represents
the number of tokens of each value on a high level place. Places which are not mentioned get 0
tokens initially. For places mentioned more than once, the specified token counts are summed
up.� �
Example:

MARKING p1 : allprimes(), p2 : 3 , p1 : succ(allprimes()) , p1.7 : 3;

assigns as many tokens to place p1 as the sum of results of evaluating ‘allprimes()’ and
‘succ(allprimes())’, with 3 additional tokens on the instance ‘p1.7’, and 3 tokens to place
‘p2’. All other places have no tokens in the initial marking.
 	
2.3.7 Transitions and Arcs

In LoLA, there is, for each transition, a distinguished section for defining that transition and all
connecting arcs. The section starts with the keyword ‘TRANSITION’ followed by the name of the
transition. This name may be built general rules for building identifiers or a number.

Then, optionally, a fairness assumption ‘WEAK FAIR’ or ‘STRONG FAIR’ may be specified. The
assumptions are effective only for the verification of a few properties. A transition is treated
weakly unfair in an infinite transition sequence iff it is, from some point in the sequence, per-
manently enabled but never fired. It is treated strongly unfair iff it is infinitely often enabled
but only finitely often fired.

The next part of a transition specification is a variable declaration in exactly the same shape
as in the definition of operations. Each assignment of values to these variables defines a firing
mode of the transition. The set of firing modes can, optionally, be further restricted through a
guard. A guard is specified as a Boolean valued expression, subsequent to the keyword ‘GUARD’.
After that, the list of incoming arcs is specified. This part starts with the keyword ‘CONSUME’
and ends with a ‘;’ Between these symbols, there is a comma-separated list of arc specifications.
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Each arc specification consists either of a low level place name, a ‘:’, and a number, or a high
level place name, a ‘:’, and a multiterm of the same sort as the mentioned place. It represents
an arc from the mentioned place to the currently specified transition. The number represents
the multiplicity of the arc. The multiterm may contain the variables which have been specified
local to this transition. The multiterm represents an arc expression which maps a firing mode
of the transition to a multiset of values to be consumed from the mentioned place.
Finally, the list of outgoing arcs is specified. This part starts with the keyword ‘PRODUCE’ and
ends with a ‘;’ Between these symbols, there is a comma-separated list of arc specifications.
Each arc specification consists either of a low level place name, a ‘:’, and a number, or a high
level place name, a ‘:’, and a multiterm of the same sort as the mentioned place. It represents
an arc from the currently specified transition to the mentioned place. The number represents
the multiplicity of the arc. The multiterm may contain the variables which have been specified
local to this transition. The multiterm represents an arc expression which maps a firing mode
of the transition to a multiset of values to be produced on the mentioned place.� �
Example:

TRANSITION t1 WEAK FAIR
VAR x,y: bla; z : phil;
GUARD x < y
CONSUME p1 : allprimes():2 + succ(x):15, p2 : 4 , p3 : z;
PRODUCE p1 : second(x) , p3 : y;

is a transition which is to be treated weakly fair for some properties. Fired in mode (x=2, y=3,
z=hegel), it removes as many tokens from p1 as specified by allprimes():2 + succ(x), with succ(x)
evaluated for x=2. It removes 4 tokens from low level place p2, and one token (of value hegel)
from place p3. It produces the tokens as specified by the multiterm second(x), evaluated for
x=2, on p1, and a single token of value 3 to place p3.
 	
Internally, each high level transition is replaced by an equivalent set of low level transitions, one
for each firing mode that satisfies the guard. The name of a ow level transition consists of the
name of the corresponding high-level transition, a ‘.’, and a description of the firing mode which
is enclosed in brackets ‘[’ and ‘]’. The firing mode is described as a ‘|’-separated list where an
entry consists of a variable name, a ‘=’, and a textual representation of a value, according to the
rules explained elsewhere.� �
Example:

The low level transition of the firing mode used in the previous example could have the name
‘t1.[y=3|x=2|z=hegel]’. There are no fixed rules for the order in which the variables appear.
 	
It is typical for high level nets that many firing modes of a high-level transition correspond to
dead low level transitions. This way, the internal representation of a high level net can easily
cause a memory overflow. For such a case, we recommend to rule out as many as possible
dead firing modes through the use of (otherwise unneeded) transition guards. For a variable
assignment that violates the guard, we do not generate a low level transition.
A high level net description may contain high level transition definitions as well as low level
transition definitions. In such a case, the user is responsible for avoiding name clashes between
specified low level transitions and generated low level instances of high-level transitions.
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3 Supported Properties

Using LoLA, you can verify various properties, including properties of

• the whole net
• a marking
• a places
• a transitions
• a state predicate
• a CTL-formula

3.1 Properties of the Whole Net

3.1.1 Checking Reversibility

A net is reversible iff the initial marking is reachable from every reachable marking.

Edit file ‘userconfig.H’ and select the option ‘#REVERSIBILITY’ (by uncommenting the appro-
priate line and commenting all other lines in the properties section). Call ‘make’ for generating
an executable file. Call that file with your net specification.� �
Example:

lola ph.net
 	
The following reduction techniques may be applied:

• Stubborn sets (automatically set)
• Invariant based state compression (always recommended)

3.1.2 Checking Deadlock freedom

A deadlock is a marking (reachable from the initial marking) that does not enable any transition.

Edit file ‘userconfig.H’ and select the option ‘#DEADLOCK’ (by uncommenting the appropriate
line and commenting all other lines in the properties section). Call ‘make’ for generating an
executable file. Call that file with your net specification.� �
Example:

lola ph.net
 	
In case of a reachable deadlock, LoLA may produce a witness path and a witness state.

The following reduction techniques may be applied:

• Stubborn sets (always recommended)
• Symmetries
• The sweep-line method
• Cycle coverage
• Attracted execution
• Invariant based state compression (always recommended)

Both depth first search and breadth first search are available. Breadth first search is only recom-
mended if you are interested in a shortest witness path to a deadlock. Choose the search strategy
by selecting (commenting or uncommenting) the appropriate lines in the file ‘userconfig.H’.
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3.1.3 Checking Existence of Home Markings

A home marking is a marking that is reachable from every reachable marking.
Edit file ‘userconfig.H’ and select the option ‘#HOME’ (by uncommenting the appropriate line
and commenting all other lines in the properties section). Call ‘make’ for generating an exe-
cutable file. Call that file with your net specification.� �
Example:

lola ph.net
 	
In case of an existing, LoLA may produce a witness state. A witness path is not directly available
but may be generated through checking reachability of the witness marking.
The following reduction techniques may be applied:
• Stubborn sets (automatically set)
• Invariant based state compression (always recommended)

3.1.4 Checking Boundedness

A net is bounded iff it has finitely many reachable markings.
Edit file ‘userconfig.H’ and select the option ‘#BOUNDEDNET’ (by uncommenting the appropriate
line and commenting all other lines in the properties section). Call ‘make’ for generating an
executable file. Call that file with your net specification.� �
Example:

lola ph.net
 	
In case of an unbounded net, LoLA may produce a witness path which demonstrates the reach-
ability of infinitely many different markings.
The following reduction techniques may be applied:
• Coverability graph (automatically set)
• Stubborn sets (always recommended)
• Symmetries
• Invariant based state compression (always recommended)

Both depth first search and breadth first search are available. Breadth first search is only recom-
mended if you are interested in a shortest generalized witness path. Choose the search strategy
by selecting (commenting or uncommenting) the appropriate lines in the file ‘userconfig.H’.

3.1.5 Checking Liveness

A net is live iff every transition is.
This verification problem is not directly supported in LoLA. You can, however, easily transform
the problem into checking liveness for each individual transition. This way, you generate |T |
state spaces instead of one. However, the individual state spaces tend to be significantly smaller
than any known reduced state space for the liveness problem for nets.

3.1.6 Checking Quasi-Liveness

A net is quasi-live iff no transition is dead in the initial marking
This verification problem is not directly supported in LoLA. You can, however, easily transform
the problem into checking death for each individual transition. This way, you generate |T | state
spaces instead of one. However, the individual state spaces tend to be significantly smaller than
any known reduced state space for the quasi-liveness problem for nets.
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3.1.7 Checking Nothing

LoLA has the opportunity of generating a state space without checking any property. This
feature is useful for evaluating reduction techniques, or for obtaining (and post-processing) the
full state space.
Edit file ‘userconfig.H’ and select the option ‘#FULL’ (by uncommenting the appropriate line
and commenting all other lines in the properties section). Call ‘make’ for generating an exe-
cutable file. Call that file with your net specification.� �
Example:

lola ph.net
 	
The following reduction techniques may be applied:
• Stubborn sets (in deadlock preserving version)
• Symmetries
• The sweep-line method
• Cycle coverage
• Invariant based state compression

Both depth first search and breadth first search are available. Breadth first search is only recom-
mended if you are interested in a shortest witness path to a deadlock. Choose the search strategy
by selecting (commenting or uncommenting) the appropriate lines in the file ‘userconfig.H’.

3.1.8 Not Checking

LoLA has the opportunity of being run without generating any state space. This feature is
useful for getting access to generated pre-processing information such as the unfolded version
of a high-level net, the automorphisms generated for the symmetry method, or the progress
measure generated for the sweep-line method.
Edit file ‘userconfig.H’ and select the option ‘#NONE’ (by uncommenting the appropriate line
and commenting all other lines in the properties section). Call ‘make’ for generating an exe-
cutable file. Call that file with your net specification.� �
Example:

lola ph.net
 	
The following reduction techniques may be applied:
• Symmetries
• The sweep-line method

3.2 Properties of a Marking

3.2.1 Specification

The marking to be analysed can be specified in a separate file. The file name is passed to LoLA
using the command line option ‘-a’. If no file name is provided, LoLA generates a file name by
replacing the extension of the net input file with ‘.task’. If option ‘-A’ is used instead of ‘-a’,
the specification is read from the standard input stream.
The specification starts with ‘ANALYSE MARKING’ followed by a description in the same syntax as
for the initial marking ( low level version or high level version ) of the net. There is, however,
no final ‘;’. Instead of a specification in a separate file, the specification can be immediately
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appended to the specification of the net. This approach is recommended if LoLA is integrated
into another tool and communicates via standard input/output streams.� �
Example for a low level specification:

ANALYSE MARKING p1: 3 , p2 : 1 ; hello : 24
 	� �
Example for a high level specification:

ANALYSE MARKING p1 : all(), bla: L(all())
 	
3.2.2 Checking Reachability

A marking is reachable iff there is a transition sequence that transforms the initial marking into
the analysed one.
Edit file ‘userconfig.H’ and select the option ‘#REACHABILITY’ (by uncommenting the appro-
priate line and commenting all other lines in the properties section). Call ‘make’ for generating
an executable file. Call that file with your net specification and the specified marking to be
analysed.� �
Example:

lola ph.net -a ph.state
 	
In case of a reachable marking, LoLA may produce a witness path.
The following reduction techniques may be applied:
• Stubborn sets (always recommended)
• Symmetries
• The sweep-line method
• Cycle coverage
• Attracted execution
• Invariant based state compression (always recommended)

Both depth first search and breadth first search are available. Breadth first search is only
recommended if you are interested in a shortest witness path. Choose the search strategy by
selecting (commenting or uncommenting) the appropriate lines in the file ‘userconfig.H’.

3.2.3 Checking Coverability

A marking is coverable iff a marking is reachable which is pointwise greater or equal than the
analysed one. This verification problem is not directly supported in LoLA. You can, however,
easily transform the problem into a reachability problem for a state predicate.� �
Example:

Coverability of marking
p1:1, p2:17, p3 : 5

corresponds to reachability of the predicate
p1 >= 1 AND p2 >= 17 AND p3 >= 5
 	
3.2.4 Checking Home Status

A marking is a home marking iff it is reachable from every reachable marking.
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This verification problem is not directly supported in LoLA. You can, however, easily transform
the problem into a liveness problem for a state predicate.� �
Example:

Marking
p1:1, p2:17, p3 : 5

is a home marking iff the predicate
p1 = 1 AND p2 = 17 AND p3 = 5 AND p4 = 0 AND ...

is live.
 	
3.3 Properties of a Place

3.3.1 Specification

The place to be analysed can be specified in a separate file. The file name is passed to LoLA
using the command line option ‘-a’. If no file name is provided, LoLA generates a file name by
replacing the extension of the net input file with ‘.task’. If option ‘-A’ is used instead of ‘-a’,
the specification is read from the standard input stream.
The specification starts with ‘ANALYSE PLACE’ followed by the name of the place. In the case of
a high-level net, a place instance name as generated by LoLA must be used. For finding out
the generated names, call LoLA with option ‘-n’ (generates the low level version of the net).
Instead of a specification in a separate file, the specification can be immediately appended to
the specification of the net. This approach is recommended if LoLA is integrated into another
tool and communicates via standard input/output streams.� �
Example for a low level specification:

ANALYSE PLACE p1
 	� �
Example for a high level specification:

ANALYSE PLACE hl.1
 	
3.3.2 Checking Boundedness

A place is bounded iff there is a fixed natural number that is greater than the number of tokens
on that place, for every reachable marking.
Edit file ‘userconfig.H’ and select the option ‘#BOUNDEDPLACE’ (by uncommenting the appro-
priate line and commenting all other lines in the properties section). Call ‘make’ for generating
an executable file. Call that file with your net specification and the specified marking to be
analysed.� �
Example:

lola ph.net -a ph.place
 	
In case of an unbounded place, LoLA may produce a generalized witness path.
The following reduction techniques may be applied:
• Coverability graph (automatically set)
• Stubborn sets (always recommended)
• Symmetries
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• Invariant based state compression (always recommended)

Both depth first search and breadth first search are available. Breadth first search is only recom-
mended if you are interested in a shortest generalized witness path. Choose the search strategy
by selecting (commenting or uncommenting) the appropriate lines in the file ‘userconfig.H’.

3.3.3 Checking Death

A place is dead iff it is unmarked in any reachable marking. This verification problem is not
directly supported in LoLA. You can, however, easily transform the problem into a reachability
problem for a state predicate.� �
Example:

Place ‘p1’ is dead iff the predicate ‘p1 > 0’ is not reachable.
 	
3.3.4 Checking Liveness

A place is live iff, from every reachable marking, a marking can be reached that marks that
place. This verification problem is not directly supported in LoLA. You can, however, easily
transform the problem into a liveness problem for a state predicate.� �
Example:

Place ‘p1’ is live iff the predicate ‘p1 > 0’ is live.
 	
3.4 Properties of a Transition

3.4.1 Specification

The transition to be analysed can be specified in a separate file. The file name is passed to
LoLA using the command line option ‘-a’. If no file name is provided, LoLA generates a file
name by replacing the extension of the net input file with ‘.task’. If option ‘-A’ is used instead
of ‘-a’, the specification is read from the standard input stream.

The specification starts with ‘ANALYSE TRANSITION’ followed by the name of the transition. In
the case of a high-level net, a transition instance name as generated by LoLA must be used.
For finding out the generated names, call LoLA with option ‘-n’ (generates the low level version
of the net). Instead of a specification in a separate file, the specification can be immediately
appended to the specification of the net. This approach is recommended if LoLA is integrated
into another tool and communicates via standard input/output streams.� �
Example for a low level specification:

ANALYSE TRANSITION t1
 	� �
Example for a high level specification:

ANALYSE TRANSITION tr.[y=3]
 	
3.4.2 Checking Death

A transition is dead iff it is disabled in every marking reachable from the initial marking.

Edit file ‘userconfig.H’ and select the option ‘#DEADTRANSITION’ (by uncommenting the appro-
priate line and commenting all other lines in the properties section). Call ‘make’ for generating
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an executable file. Call that file with your net specification and the specified marking to be
analysed.� �
Example:

lola ph.net -a ph.transition
 	
In case of an non-dead transition, LoLA may produce a witness path and a witness state.

The following reduction techniques may be applied:

• Coverability graph

• Stubborn sets (always recommended)

• Symmetries

• The sweep-line method

• Cycle Coverage

• Attracted execution

• Invariant based state compression (always recommended)

Both depth first search and breadth first search are available. Breadth first search is only recom-
mended if you are interested in a shortest generalized witness path. Choose the search strategy
by selecting (commenting or uncommenting) the appropriate lines in the file ‘userconfig.H’.

3.4.3 Checking Liveness

A transition is live iff, from every reachable marking, a marking is reachable that enables that
transition. This verification problem is not directly supported in LoLA. You can, however, easily
transform the problem into a liveness problem for a state predicate.� �
Example:

t1 with pre-places specified through
CONSUME p1 : 2, p2 : 5;

is live iff the predicate
p1 >= 2 AND p2 >= 5

is live.
 	
3.5 Properties of a State Predicate

3.5.1 Specification

The predicate to be analysed can be specified in a separate file. The file name is passed to LoLA
using the command line option ‘-a’. If no file name is provided, LoLA generates a file name by
replacing the extension of the net input file with ‘.task’. If option ‘-A’ is used instead of ‘-a’,
the specification is read from the standard input stream.

The specification starts with ‘FORMULA’ followed by the description of the predicate. The syntax
for a state predicate is the same as for a CTL-formula. As the only difference, temporal operators
(‘NEXTSTEP’, ‘ALWAYS’, ‘EVENTUALLY’, ‘UNTIL’) and path quantifiers (‘EXPATH’, ‘ALLPATH’) cannot
be used in a state predicate.

Instead of a specification in a separate file, the specification can be immediately appended to
the specification of the net. This approach is recommended if LoLA is integrated into another
tool and communicates via standard input/output streams.
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Example for a low level specification:

FORMULA (p1 > 2 AND p3 = 4) OR p6 < 5
 	� �
Example for a high level specification:

FORMULA ALL x : phil : [ x = 3 ] OR hasright . ( x ) > 0
 	
3.5.2 Checking Reachability

A state predicate is reachable if there is a marking reachable from the initial marking where the
given predicate is satisfied.

Edit file ‘userconfig.H’ and select the option ‘#STATEPREDICATE’ (by uncommenting the appro-
priate line and commenting all other lines in the properties section). Call ‘make’ for generating
an executable file. Call that file with your net specification and the specified marking to be
analysed.� �
Example:

lola ph.net -a ph.statepredicate
 	
In case of a reachable state predicate, LoLA may produce a witness path and a witness state.

The following reduction techniques may be applied:

• Stubborn sets (always recommended)

• The sweep-line method

• Cycle Coverage

• Attracted execution

• Invariant based state compression (always recommended)

Both depth first search and breadth first search are available. Breadth first search is only
recommended if you are interested in a shortest witness path. Choose the search strategy by
selecting (commenting or uncommenting) the appropriate lines in the file ‘userconfig.H’.

3.5.3 Checking Liveness

A state predicate is reachable live iff, from every reachable marking, there is a marking reach-
able where the given predicate is satisfied. The property corresponds to the CTL specification
AG EF φ.

Edit file ‘userconfig.H’ and select the option ‘#LIVEPRPOP’ (by uncommenting the appropriate
line and commenting all other lines in the properties section). Call ‘make’ for generating an
executable file. Call that file with your net specification and the specified marking to be analysed.� �
Example:

lola ph.net -a ph.statepredicate
 	
In case of a non-live state predicate, LoLA may produce a witness state, i.e. a marking from
which no marking is reachable that satisfies the predicate.

The following reduction techniques may be applied:

• Stubborn sets (always recommended)

• Invariant based state compression (always recommended)
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3.5.4 Checking Fairness

A state predicate is fair iff it occurs infinitely often on every path that starts with the initial
marking and treats all transitions fair w.r.t. their specified fairness assumption. The property
corresponds to the LTL specification GF φ.

Edit file ‘userconfig.H’ and select the option ‘#FAIRPRPOP’ (by uncommenting the appropriate
line and commenting all other lines in the properties section). Call ‘make’ for generating an
executable file. Call that file with your net specification and the specified marking to be analysed.� �
Example:

lola ph.net -a ph.statepredicate
 	
The following reduction techniques may be applied:

• Stubborn sets (always recommended)

• Invariant based state compression (always recommended)

3.5.5 Checking Stabilization

A state predicate stabilizes iff, on every path that starts with the initial marking and treats all
transitions fair w.r.t. their specified fairness assumption, the predicate is satisfied for all but
finitely many states. The property corresponds to the LTL specification FG φ.

Edit file ‘userconfig.H’ and select the option ‘#STABLEPRPOP’ (by uncommenting the appro-
priate line and commenting all other lines in the properties section). Call ‘make’ for generating
an executable file. Call that file with your net specification and the specified marking to be
analysed.� �
Example:

lola ph.net -a ph.statepredicate
 	
The following reduction techniques may be applied:

• Stubborn sets (always recommended)

• Invariant based state compression (always recommended)

3.5.6 Checking Eventual Occurrence

A state predicate stabilizes iff, on every path that starts with the initial marking and treats all
transitions fair w.r.t. their specified fairness assumption, the predicate is satisfied for all but
finitely many states. The property corresponds to the LTL specification F φ.

Edit file ‘userconfig.H’ and select the option ‘#EVENTUALLYPRPOP’ (by uncommenting the ap-
propriate line and commenting all other lines in the properties section). Call ‘make’ for gener-
ating an executable file. Call that file with your net specification and the specified marking to
be analysed.� �
Example:

lola ph.net -a ph.statepredicate
 	
The following reduction techniques may be applied:

• Stubborn sets (always recommended)

• Invariant based state compression (always recommended)
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3.6 Properties of a CTL Formula

3.6.1 Specification

The formula to be analysed can be specified in a separate file. The file name is passed to LoLA
using the command line option ‘-a’. If no file name is provided, LoLA generates a file name
by replacing the extension of the net input file with ‘.task’. If option ‘-A’ is used instead
of ‘-a’, the specification is read from the standard input stream. Instead of a specification in
a separate file, the specification can be immediately appended to the specification of the net.
This approach is recommended if LoLA is integrated into another tool and communicates via
standard input/output streams.

The specification starts with ‘FORMULA’ followed by the description of the predicate. For place-
transition nets, a formula can be recursively constructed as follows:

• Every comparison is a CTL formula. A comparison consists of a place name, one of the
operators ‘<’, ‘>’, ‘<=’, ‘>=’, ‘=’, ‘<>’, ‘#’, and a natural number. A marking satisfies a
comparison if the number of tokens on the specified places is in the specified relation to
the given number. Thereby, ‘#’ and ‘<>’ both represent inequality while all other operators
have the obvious meaning.� �
Example:

p17 >= 28
 	
• Boolean combinations of CTL formulas are CTL formulas. The Boolean operators ‘AND’, ‘OR’,

and ‘NOT’ can be used. Formulas may be enclosed in parenthesis for controlling precedence.� �
Example:

p1 > 3 AND NOT (p15 = 1 OR p17 <= 0) AND p3 # 2
 	
• A CTL formula preceded by any of the following pairs of keywords is a CTL for-

mula: ‘ALLPATH ALWAYS’, ‘EXPATH ALWAYS’; ‘ALLPATH EVENTUALLY’, ‘EXPATH EVENTUALLY’,
‘ALLPATH NEXTSTEP’, ‘EXPATH NEXTSTEP’. Thereby, ‘ALLPATH’ represents the universal path
quantifier A and requires validity of the subsequent formula on all paths, ‘EXPATH’ repre-
sents the existential path quantifier E and requires validity of the subsequent formula on at
least one path.

‘ALWAYS’ represents the temporal operator G and requires validity of the subsequent formula
on all states on a path, ‘EVENTUALLY’ represents the temporal operator F and requires
validity of the subsequent formula on at least one state on a path, ‘NEXTSTEP’ represents
the temporal operator X and requires validity of the subsequent formula on the second state
of a path.� �
Example:

ALLPATH ALWAYS EXPATH EVENTUALLY (p1 = 3 OR EXPATH NEXTSTEP p2 > 5)
 	
• If phi and psi are CTL formulas, so are ‘EXPATH [ phi UNTIL psi ]’ and ‘ALLPATH [ phi

UNTIL psi ]’. ‘UNTIL’ represents the temporal operator U and requires that psi is valid on
some state on a path such that phi is valid on all preceding states.� �
Example:

EXPATH [ p1 = 3 UNTIL ALLPATH [p2 = 4 UNTIL ALLPATH EVENTUALLY p7 > 15]]
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For high-level nets, there are the following additional features:
• A formula may be preceded by a variable quantification. A variable quantification starts

with one of the keywords ‘ALL’ or ‘EXISTS’, followed by an identifier, a ‘:’, the name of a
sort which is defined in the net description, and a ‘:’. The subsequent formula comprises
the scope of the quantification.

• A high level place name can be extended with a symbolic instance expression. The expres-
sion must be enclosed in parenthesis and is appended to the place name with a ‘.’. The
expression must have a sort that is compatible to the sort of the involved place. It may use
all constants and operations which are permitted in specifications of operations in the net
description. An expression may contain those variables that have been introduced through
those quantifications which have the specified expression in their scope.

• Every boolean expression (according to the syntax for operations in the net description,
enclosed in brackets, is a CTL formula.� �
Example:

EXPATH EVENTUALLY ALL x : phil : ( [x = 3 ] OR [ hasleft . ( x ) > 0 )] )

specifies that there is a reachable marking where all instances of high level place ‘hasleft’,
except ‘hasleft.3’, have at least one token.
 	

3.6.2 Model Checking

A CTL formula is valid iff it is satisfied by the initial marking of the net.
Edit file ‘userconfig.H’ and select the option ‘#MODELCHECKING’ (by uncommenting the appro-
priate line and commenting all other lines in the properties section). Call ‘make’ for generating
an executable file. Call that file with your net specification and the specified marking to be
analysed.� �
Example:

lola ph.net -a ph.ctlformula
 	
In case of a satisfied existentially unquantified formula, or a violated universally quantified
formula, LoLA may produce a witness path. The path does only concern the top level temporal
operator, i.e., subformulas are treated as if they were atomic. The following reduction techniques
may be applied:
• Stubborn sets (always recommended)
• Invariant based state compression (always recommended)
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4 Reduction Techniques

The list of reduction techniques in LoLA includes

• Symmetries

• Stubborn Sets

• Sweep Line Method

• Cycle coverage

• Coverability graph

• Attracted Execution

• Invariant based compression

Most techniques may be applied in combination. LoLA shall always use a version of a reduction
technique that preserves the analysed property. In many cases, variations of a technique are
used which are particularly optimised for the analysed property.

4.1 Symmetries

Applicability

The symmetry method is available to all properties which concern single places, transitions, or
markings. It is further applicable to the global verification problems of boundedness, reversibil-
ity, deadlock freedom. Symmetry reduction typically causes significant overhead in run-time and
memory. It is recommended if the system under investigation exhibits a high degree of regularity
such as a lot of identical components which interact in some systematically structured network.
The reduction is typically linear in the number of graph automorphisms which in turn may be
exponential in the size of the net.

Unlike many other tools, LoLA can determine symmetry in the system completely on its own.
It neither needs an external specification of symmetries, nor the use of dedicated data types
(“scalar sets”). Instead, it explores all graph automorphisms of the investigated Petri net which
yields at least as strong reduction as alternative approaches.

Invocation

The symmetry method is invoked by uncommenting the line ‘#SYMMETRY’ in the file
‘userconfig.H’, prior to the generation of an executable file. The value ‘#SYMMINTEGRATION’
selects a particular strategy of generating a symmetrically reduced state space.
‘SYMMINTEGRATION’ can be given any value between 1 and 5. The values have the following
meaning:

1 Compute a generating set of the automorphisms in advance. Then, for each marking,
iterate the set of all symmetries (with some reasonable shortcuts) and check the
symmetric image of the marking for presence in the set of known markings. This
method yields maximum reduction but may be prohibitively inefficient for massively
symmetrical systems.

2 Do not compute a generating set of the automorphisms in advance. Then, for each
marking, iterate all known markings and try to compute a symmetry that maps
between them. This method yields maximum reduction. It is only recommendable
for massively symmetrical system. Currently, the use of the method is discouraged
due to an unfixed bug.

3 Compute a generating set of the automorphisms in advance. Use this set for trans-
forming a newly encountered marking into an approximated canonical representative
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which is searched in, and inserted into, the set of known markings. Does not yield
maximum reduction but has the by far best performance.

4 Do not compute a generating set of the automorphisms in advance. Compute an
approximation of a canonical representative for each newly encountered marking.
The method is an alternative to method 3 for massively symmetrical systems.

5 Do not compute a generating set of the automorphisms in advance. Compute a
canonical representative for each newly encountered marking. The method is an
alternative to method 4 for the case that the penalty of approximating the canonical
representative (in terms of a larger state space) is significant.

We strongly recommend the use of method 3. It is the one we most frequently applied so far.
Thus, it is the most stable option.
For method 4, the option ‘MAXATTEMPT’ controls a trade-off between reduction and run-time. A
large value refers to slow verification but close to maximum reduction while a small value refers
to fast verification but a larger state space. We do not have much experience with a good choice
of that value.
If one of the methods is used where a generating set of all graph automorphisms is generated in
advance, LoLA can output this generating set using the ‘-y’ option

Compatibility

The symmetry method can be applied in combination with the stubborn set method, the state
compression based on invariants, the coverability graph construction, and the cycle coverage
method. It is incompatible with the sweep-line method, and attracted execution. It can be
applied with both depth-first and breadth-first search.

Further reading

The symmetry methods implemented in LoLA correspond to the publications:
• Tommi A. Junttila. New canonical representative marking algorithms for place/transition-

nets. In J. Cortadella and W. Reisig, editors, Application and Theory of Petri Nets 2004,
volume 3099 of Lecture Notes in Computer Science, pages 258-277. Springer, 2004.

• Karsten Schmidt. How to Calculate Symmetries of Petri Nets. Acta Inf., 36(7):545-590,
2000. [DOI]

• Karsten Schmidt. Integrating Low Level Symmetries into Reachability Analysis. In Su-
sanne Graf and Michael I. Schwartzbach, editors, Tools and Algorithms for the Construction
and Analysis of Systems: 6th International Conference, TACAS 2000, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2000, Berlin, Ger-
many, March/April 2000. Proceedings, volume 1785 of Lecture Notes in Computer Science,
pages 315-330, 2000. Springer-Verlag. [SpringerLink]

4.2 Stubborn Sets

Applicability

The stubborn set method is available for all properties supported by LoLA. Its use is always
recommended as it does not produce significant overhead, neither in run time nor space. It
performs best if the system under investigation exhibits a substantial amount of concurrency.
Making more detailed predictions on its reduction power is rather difficult.
LoLA features a broad range of stubborn set methods. Each is optimised for the verification of a
particular property. LoLA shall automatically incorporate a stubborn set method that preserves
the class of properties that has been selected by the user in ‘userconfig.H’. Only for checking
reachability and dead transition verification, the user may choose between a strict and a relaxed
method, as explained below.

http://dx.doi.org/10.1007/s002360050002
http://www.springerlink.com/content/d8dckgmuf9p3bq3c/
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Invocation

The stubborn set method is invoked by uncommenting the line ‘#STUBBORN’ in the file
‘userconfig.H’, prior to the generation of an executable file. The option ‘#RELAXED’ toggles the
choice between the strict and the relaxed version of the stubborn set method. It is only relevant
for reachability and dead transition verification. We recommend to use the strict version in
those cases where the investigated marking/state predicate is expected to be reachable or the
investigated transition is expected not to be dead. Otherwise, we recommend to use the relaxed
version.

Compatibility

The stubborn set method is compatible with all other reduction techniques, and both depth-first
and breadth-first search.

Further reading

Most stubborn set methods implemented in LoLA correspond to the publications:
• Antti Valmari. The State Explosion Problem. In W. Reisig and G. Rozenberg, Eds, Lectures

on Petri Nets I: Basic Models, Advances in Petri Nets, the Volumes Are Based on the
Advanced Course on Petri Nets, volume 1491 of Lecture Notes in Computer Science, pages
429-528, 1998. Springer-Verlag.

• Rob Gerth, Ruurd Kuiper, Doron Peled, Wojciech Penczek: A Partial Order Approach to
Branching Time Logic Model Checking. Inf. Comput. 150(2): 132-152 (1999)

• Lars Michael Kristensen, Karsten Schmidt, Antti Valmari: Question-guided stubborn set
methods for state properties. Formal Methods in System Design (FMSD) 29(3):215-251
(2006). [DOI]

• Karsten Schmidt. Stubborn Sets for Model Checking the EF/AG Fragment of CTL. Fun-
dam. Inform., 43(1-4):331-341, August 2000.

• Karsten Schmidt. Stubborn Sets for Standard Properties. In Applications and Theory of
Petri Nets 1999: 20th International Conference, ICATPN’99, Williamsburg, Virginia, USA,
June 1999. Proceedings, volume 1639 of Lecture Notes in Computer Science, pages 46-65,
1999. Springer-Verlag. [SpringerLink]

4.3 Sweep-Line Method

Applicability

The sweep line method is available for all reachability, and dead transition problems. Use of the
method is recommended for systems which exhibit substantial sequential subbehaviours in their
components.
The sweep-line method is based on a so-called progress measure. LoLA generates such a progress
measure automatically and is able to output it using the ‘-y’ option.

Invocation

The sweep-line method is invoked by uncommenting the line ‘#SWEEP’ in the file ‘userconfig.H’,
prior to the generation of an executable file.

Compatibility

The sweep-line method is compatible only with the stubborn set method. Use in combination
with the stubborn set method is strongly recommended as otherwise only insignificant reduction
can be obtained in many examples.
With the sweep-line method, it is impossible to produce a witness path for the checked property.
It is also not possible to output the visited states. However, a witness state can still be generated.

http://dx.doi.org/10.1007/s10703-006-0006-1
http://www.springerlink.com/content/mtj3p6183xchedr9/
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Further reading

The sweep-line method as implemented in LoLA corresponds to the publications:

• Lars Michael Kristensen and Thomas Mailund. A Generalised Sweep-Line Method for
Safety Properties. Proc. Formal Methods Europe, volume 2391 of Lecture Notes in Com-
puter Science, 2002, pp. 549-567

• Karsten Schmidt. Automated Generation of a Progress Measure for the Sweep-Line
Method. STTT, 8(3):195-203, June 2006. Also in: Kurt Jensen and Andreas Podelski, edi-
tors, Tools and Algorithms for the Construction and Analysis of Systems, 10th International
Conference, TACAS 2004, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2004, Barcelona, Spain, March 29-April 2, 2004, Proceedings,
volume 2988 of Lecture Notes in Computer Science, pages 192-204, 2004. Springer-Verlag.
[DOI]

4.4 Cycle Coverage

Applicability

The cycle coverage method is available only for the verification of reachability and dead tran-
sition problems. Its use is subject to a space/time trade-off which may be controlled in the
configuration of LoLA.

Invocation

The cycle coverage method is invoked by uncommenting the line ‘#CYCLE’ in the file
‘userconfig.H’, prior to the generation of an executable file. The method basically consists of
storing only as many states as necessary to have at least one state per cycle in the state space
in the set of stored states. Other states are computed and processed but not stored. By the
cycle coverage property, this method terminates but may compute one and the same state
several times. The option ‘#MAXUNSAVED’ controls the time/space trade-off through storing
additional states. A large number leads to better reduction but increase of run-time while a
small number leads to fast verification but weaker reduction. Another way of controlling the
trade-off is to set (uncomment) the option ‘#NONBRANCHINGONLY’ in the file ‘userconfig.H’.
This method has a reasonable performance but may lead to less significant reduction than a
good value for ‘#MAXUNSAVED’.

Compatibility

The cycle coverage method is compatible only with the stubborn set and symmetry methods.
Use in combination with the stubborn set method is strongly encouraged as otherwise only
insignificant reduction is obtained in many examples. The method requires the use of the
depth-first search strategy.

Further reading

The method has been described in

• Karsten Schmidt. Using Petri Net Invariants in State Space Construction. In Hubert
Garavel and John Hatcliff, editors, Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2003), 9th International Conference, Part of ETAPS 2003, Warsaw,
Poland, volume 2619 of Lecture Notes in Computer Science, pages 473-488, 2003. Springer-
Verlag. [SpringerLink]

4.5 Coverability Graph

http://dx.doi.org/10.1007/b96393
http://www.springerlink.com/content/20v8eyakvde5e558/
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Applicability

The coverability graph construction is available for the verification of boundedness (of a net or
a particular place), and the dead transition problem. For the boundedness problems, its use is
compulsory.

Invocation

The coverability graph method is invoked by uncommenting the line ‘#COVER’ in the file
‘userconfig.H’, prior to the generation of an executable file.

Compatibility

The coverability graph method is only compatible with the stubborn set method and the sym-
metry method. It can be used for both depth-first and breadth-first search.

Further reading

The coverability graph method implemented in LoLA corresponds to the publications:
• R.M. Karp, R.E. Miller: Parallel program schemata. J. Computer and System Sciences 4,

1969, pp. 147-195
• Karsten Schmidt. Model-Checking with Coverability Graphs. Formal Methods in System

Design, 15(3):239-254, November 1999. [DOI]

4.6 Attracted Execution

Applicability

The attracted execution method is available for all reachability and dead transition properties
as well as the existence of deadlocks.
It is not a complete verification technique. It rather generates random execution sequences and
checks the visited markings for the property to be verified. In case of non-reachability or death
of the investigated transition, LoLA runs forever.

Invocation

The attracted execution method is invoked by uncommenting the line ‘#FINDPATH’ in the file
‘userconfig.H’, prior to the generation of an executable file.

Compatibility

The attracted execution method is compatible only with the stubborn set method. Application
in combination with the stubborn set method is strongly encouraged as only in this combination,
execution is attracted towards witness states for the investigated property.

4.7 Invariant Based Compression

Applicability

The compression of states is applicable for all properties supported by LoLA. It does not reduce
the number of generated states, but the amount of memory necessary for storing an individual
state. It typically improves both run-time and memory consumption while the preprocessing is
insignificant. It is thus recommended to always use this technique.

Invocation

The state compression method is invoked by uncommenting the line ‘#PREDUCTION’ in the file
‘userconfig.H’, prior to the generation of an executable file.

http://dx.doi.org/10.1023/A:1008753219837
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Compatibility

The state compression technique is compatible with all other reduction techniques, except for
the sweep-line method.

Further reading

The method corresponds to the publication:
• Karsten Schmidt. Using Petri Net Invariants in State Space Construction. In Hubert

Garavel and John Hatcliff, editors, Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2003), 9th International Conference, Part of ETAPS 2003, Warsaw,
Poland, volume 2619 of Lecture Notes in Computer Science, pages 473-488, 2003. Springer-
Verlag. [SpringerLink]

http://www.springerlink.com/content/20v8eyakvde5e558/
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5 Output

LoLA is able to produce some valuable output.
• Verification result: return value
• Witness/counterexample path
• Witness/counterexample state
• The generated portion of the state space
• The low level version of a HL net
• The generating set of net automorphisms
• The generated progress measure
• Status information

5.1 Return Value

The result of verification is written to the standard error stream. For a comfortable integration
of LoLA into other tools, the result is also passed as the exit value of the program. It can thus
be processed in a calling program or a wrapping shell script. The return values of the executable
of LoLA has the following meaning:

0 specified state or deadlock found/net or place unbounded/home marking exists/net
is reversible/predicate is live/CTL formula true/transition not dead/liveness prop-
erty does not hold;

1 the opposite verification result as a thumb rule, if the outcome of a verification result
can be supported by a counterexample or witness path, that case corresponds to
return value 0;

2 Memory overflow during verification;
3 Syntax error in the net or property description
4 Error in accessing files (cannot open, no write permission etc.)
5 Maximal number of states (MAXIMALSTATES in ‘userconfig.H’) exceeded
other uncaught memory overflow, or bug

5.2 Witness Path

For some problems, LoLA is able to provide a witness or counterexample path for the verification
problem. This path can be accessed using the ‘-p’ or ‘-P’ command line option when running
LoLA. When the ‘-p’ option is followed by a file name, the path is written to the specified
file. If ‘-p’ is used without a file name, a file name is created by replacing the suffix of the net
specification file with ‘.path’. Using ‘-P’, the path is written to the standard output stream
which is convenient for integrating LoLA into other tools.
The path output starts with ‘PATH’, followed by a white space separated list of transition names.
Instances of high level net transitions come in their generated low level name.
If the coverability graph option is used, parts of the path may be enclosed in parenthesis ‘(’ and
‘)’. In that case, the enclosed parts are to be executed “very often” in order to show that some
places may have “many” tokens.

5.3 Witness State

For some problems, LoLA is able to provide a witness state for the verification problem. This
state can be accessed using the ‘-s’ or ‘-S’ command line option when running LoLA. When
the ‘-s’ option is followed by a file name, the state is written to the specified file. If ‘-s’ is used
without a file name, a file name is created by replacing the suffix of the net specification file with
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‘.state’. Using ‘-S’, the state is written to the standard output stream which is convenient for
integrating LoLA into other tools.
The state output starts with ‘STATE’, followed by the description of a marking in the same
format as in the place/transition net description (but without the finalizing ‘;’).

5.4 Computed Portion of the State Space

For most verification runs, LoLA is able to report on the computed portion of the state space. Ex-
ceptions concern the use of reduction techniques (like the sweep-line method or the goal-oriented
execution) and the verification of some properties where advanced state space exploration strate-
gies (other then normal depth-first or breadth-first search) are applied. Graph output can be
activated using the ‘-g’, ‘-G’, ‘-m’, or ‘-M’ command line options when running LoLA. When the
‘-g’ or ‘-m’ option is followed by a file name, the graph is written to the specified file. If ‘-g’ or
‘-m’ is used without a file name, a file name is created by replacing the suffix of the net specifi-
cation file with ‘.graph’. Using ‘-G’ or ‘-M’, the graph is written to the standard output stream
which is convenient for integrating LoLA into other tools. The graph output consists of a list of
states. If the ‘-m’ or ‘-M’ options are used, we write for each state, a header, the corresponding
marking (in the same syntax as for the place/transition net initial marking), and information
about successors. The first and third part of the description depend on the underlying search
strategy. If the ‘-g’ or ‘-G’ options are used, only the first and third parts of the description
(i.e., the mere graph structure) are written.
If depth first search is used, the header consists of the text ‘STATE’ and a number. The number is
the depth-first search number which is consecutively assigned to each state upon first visit. The
order of appearance in the state output file corresponds to the order of completion of the states.
Between ‘STATE’ and number, there may occur one of the characters ‘!’ or ‘*’. ‘!’ identifies a
state that proves the actual property (like an existing deadlock, the state satisfying the given
predicate, etc.), and the states marked with ‘*’ are those on a path from the initial state to
the one marked ‘!’. These special marks occur only if the state space has not been traversed
completely.
Subsequent to the (optional) marking description, a depth-first graph output lists the set tran-
sitions to be considered. For unreduced state space generation, this is the list of enabled tran-
sitions, otherwise a subset thereof. For each transition, we mention its name and, separated
with ‘->’ the number of the resulting successor state. If an incompletely traversed state space
is printed, the ‘->’ may be replaced by a ‘=>’, and the number of the successor state may be
replaced by a ‘?’. The single transition marked ‘=>’ is the one on the witness or counterexample
path for the property to be verified. ‘?’ replaces numbers of those states which have not been
visited during verification.
If breadth first search is used, the header has the form ‘STATE number1 FROM number2 BY
transition-name ’. ‘number1 ’ is the consecutively assigned number of visit of the reported
state. ‘number2 ’ is the unique number of the predecessor state from which this state has been
visited. ‘transition-name ’ is the name of the transition responsible for transforming state
‘number1 ’ into state ‘number2 ’.
Subsequent to the (optional) marking description, the list of considered transitions (without
information on the reached state number) is listed as a white-space separated list of transition
names.

5.5 Place/Transition Net

This feature is only useful if the original net specification is a high-level net. Then, it is possible
to generate a complete net description file in the place/transition net syntax, containing the
semantically equivalent low level counterpart of the given high-level net. This output option is
triggered by the ‘-n’ or ‘-N’ command line option. When the ‘-n’ option is followed by a file
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name, the net is written to the specified file. If ‘-n’ is used without a file name, a file name is
created by replacing the suffix of the net specification file with ‘.llnet’. Using ‘-N’, the net
is written to the standard output stream which is convenient for integrating LoLA into other
tools.

The names used in the generated description correspond to the internally used names for place
and transition instances.

5.6 Net Automorphisms

In most cases where the symmetry method is applied, LoLA is able to report the computed
set of net automorphisms which describe the symmetries in the net. This information can be
accessed using the ‘-y’ or ‘-Y’ command line option when running LoLA. When the ‘-y’ option
is followed by a file name, the automorphisms are written to the specified file. If ‘-y’ is used
without a file name, a file name is created by replacing the suffix of the net specification file
with ‘.symm’. Using ‘-Y’, the automorphisms are written to the standard output stream which
is convenient for integrating LoLA into other tools.

Each automorphism description starts with ‘GENERATOR’, followed by numbers which are sepa-
rated by a ‘.’. These numbers describe the structure of the generating set. The first number is
a family number, the second one a consecutive number within each family. Each automorphism
can be obtained from generators by composing at most one generator per family. Thereby, the
composition of 0 generators is supposed to yield the identity mapping.

Subsequent to the discussed numbers, the actual automorphism (a bijection on the places) is
reported. It is description in the so-called cycle notation. It consists of a list of cycles where is
cycle is a list of place names, enclosed in parenthesis ‘(’ and ‘)’. The corresponding mapping is
defined as follows: If a place name does not appear in any cycle, it is mapped to itself. If a place
name occurs as the last entry of a cycle, it is mapped to the first entry of this cycle Otherwise,
the place is mapped to the respective next entry of its cycle� �
Example:

(a b c) (d f)

represents the mapping
a->b, b->c, c->a, d->f, e->e, f->d.
 	
5.7 The Generated Progress Measure

If the sweep-line method is among the reduction techniques to be used, LoLA calculates a
progress measure which is an important ingredient to that technique. This measure can be
accessed using the ‘-y’ or ‘-Y’ command line option when running LoLA. When the ‘-y’ option
is followed by a file name, the measure is written to the specified file. If ‘-y’ is used without a
file name, a file name is created by replacing the suffix of the net specification file with ‘.state’.
Using ‘-Y’, the progress measure is written to the standard output stream which is convenient
for integrating LoLA into other tools.

The output starts with the text ‘PROGRESS MEASURE’, followed by a white space separated list
where each entry consists of a transition name (or the name of a transition instance), a ‘:’, and
a number. From this information, the used progress measure is defined as follows: The initial
marking has progress value 0. If some marking m has progress value p, firing transition t in m
leads to marking m’, and we report value x for t, then m’ has progress value p + x. The design
of the measure takes care that progress values are independent of the path on which we reach
them.
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5.8 Status information

During the execution of LoLA, status information is generated and printed to the standard er-
ror output stream. During calculation of net automorphisms, LoLA reports traversal of certain
levels in a search tree (which has a size that is equal to the number of places and transitions
in the place-transition net). During standard state space exploration, LoLA reports the num-
ber of visited states and explored state changes. During plain execution, LoLA reports the
number of fired transition. Using the sweep-line method, LoLA reports the number of fired
transition, the currently processed round and progress value as well as current and peak number
of stored states. The amount of produced information can be controlled through the directive
‘#REPORTFREQUENCY’ in the file ‘userconfig.H’. The value refers in most cases to the number
of fired transitions after which a message is produced. For the calculation of automorphisms, it
refers to the depth at which a message is emitted.

5.9 State Limit

The number of states to be generated can be controlled through the directive ‘#MAXIMALSTATES’
in the file ‘userconfig.H’. As soon as this number of states was generated, LoLA terminates
with return value 5.
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6 Download

The use of LoLA is free under the GNU General Public License which is part of the distribution.
After downloading and unpacking LoLA, there will be a directory called lola containing a number
of C++ source files. For running LoLA,
• edit the file ‘userconfig.H’. Most parts of this file concern properties to be verified or

available reduction techniques. The effect of editing those parts of ‘userconfig.H’ is ex-
plained in the respective section of the online documentation. The only remaining option is
‘#HASHSIZE’. Its value controls the size of the hash table for storing visited states. A larger
value speeds up state space exploration a little bit at the price of requiring more memory
for the table itself. For most users, the original value should be satisfactory.

• Create an executable file by calling the shell tool ‘make’. As a result, there will be an
executable called ‘lola’.

• Call ‘lola’ with a file containing the net description, a file containing information about
the verified property (if applicable – refer to the documentation for details), and some
command line options controlling the desired output information (also explained in the
documentation).

• The configuration in which LoLA has been generated can be accessed calling ‘lola’ with
the command line option ‘-h’.

In a subdirectory of LoLA, you can find a number of example Petri net descriptions as well as
examples for additional information about verification problems.



Chapter 7: First Steps 37

7 First Steps

7.1 Setup and Installation

1. Go to http://service-technology.org/files/lola and download the latest release ver-
sion of LoLA, say ‘lola-1.15-unreleased.tar.gz’. To setup and compile LoLA, change
into your download directory and type� �
tar xfz lola-1.15-unreleased.tar.gz

cd lola-1.15-unreleased

./configure

make
 	
After compilation, a binary ‘src/lola’ is generated.1 If you experience any compiler warn-
ings, don’t panic: LoLA contains some generated or third party code that we cannot influ-
ence.

2. To test whether everything went fine, type� �
make check
 	
to execute the testcases located in ‘tests’. If everything went fine, you should see something
like:

==================

All 9 tests passed

==================

If an error occurs, please send the output to lola@service-technology.org.
3. To install the binary, the manpage, and the documentation, type� �

make install
 	
You might need superuser permissions to do so.

If you need any further information, see file ‘INSTALL’ for detailed instructions.

7.2 Contents of the Distribution

The distribution contains several directories:

‘doc’ The Texinfo documentation of LoLA and a PDF file ‘background.pdf’ with a short
description of the setting in which LoLA should be used. The documentation can
be created using ‘make pdf’. Note you need to have LoLA properly installed before
(see Installation description above).

‘src’ The source code of LoLA.

‘tests’ Testcases for LoLA which check the generated binary.

1 On Microsoft Windows, the file will be called ‘lola.exe’.

http://service-technology.org/files/lola
mailto:lola@service-technology.org
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8 Additional Utilities

The directory ‘utils’ contains several small helper tools to postprocess outputs from LoLA.

8.1 Drawing Reachability Graphs: graph2dot

The Dining Philosophers can deadlock if every philosopher takes his left fork. LoLA can find
this deadlock. Enter� �
lola-deadlock phils.llnet
 	
which returns

15 Places

12 Transitions

dead state found!

>>>>> 4 States, 3 Edges, 4 Hash table entries

To visualize the generated state space and the deadlock trace, execute� �
lola-deadlock phils.llnet -m

graph2dot -g phils.graph -d phils-deadlock.dot

dot phils-deadlock.dot -Tpng -O
 	
The resulting graph ‘phils-deadlock.dot.png’ should look as the graph in Fig. 1.

fo.1, fo.2, fo.3, th.1, th.2, th.3

fo.1, fo.3, hl.2, th.1, th.3

tl.[y=2]

fo.1, hl.2, hl.3, th.1

tl.[y=3]

hl.1, hl.2, hl.3

tl.[y=1]

Figure 1. Deadlock trace of the Dining Philosophers

To draw the whole reachability graph of the Dining Philosophers, execute the following com-
mands:� �
lola-full phils.llnet -m

graph2dot -g phils.graph -d phils.dot

dot phils.dot -T png -O
 	
The resulting graph ‘phils.dot.png’ should look as the graph in Fig. 2.
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Figure 2. Reachability graph of the Dining Philosophers

To display all command-line parameters of graph2dot, enter
graph2dot 1.15-unreleased

Converts a reachability graph into a Graphviz dot notation

Usage: graph2dot [-h|--help] [-V|--version] [-gFILE|--graph=FILE]

[-dFILE|--dot=FILE] [-cINT|--columns=INT] [-e|--emptyStates]

[-p|--pathOnly] [-fPLACE|--filter=PLACE] [-xPLACE|--exclude=PLACE]

-h, --help Print help and exit

-V, --version Print version and exit

Input/output:

-g, --graph=FILE Read a reachability graph from file. (If option is

omitted, graph2dot reads from stdin)

-d, --dot=FILE Write the dot representation to file. (If option is
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omitted, graph2dot writes to stdout)

Options:

-c, --columns=INT Number of places of a marking to be printed in a state

before a newline is printed.

-e, --emptyStates Do not print the marking in a state, but only a small

circle (useful for large graphs). (default=off)

-p, --pathOnly Only print the states on the witness/counterexample path

(default=off)

-f, --filter=PLACE Print only the marking of the given places in the

states. Multiple places can be given, either as

comma-separated list or with multiple ‘--filter’

options.

-x, --exclude=PLACE Do not print the marking of the given places in the

states. Multiple places can be given, either as

comma-separated list or with multiple ‘--exclude’

options.

Examples:

graph2dot -c1 -fp1,p2,p3 -g net.graph -d net.dot

lola net.lola -M | graph2dot | dot -Tpng -o net.png
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9 Version History

LoLA is developed under the “Release Early, Release Often” maxime (see
http://catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html):
Whenever enough integrated or a non-trivial changes have summed up, a new version is
published. Though this releases might now always mark significant changes, they at least allow
to quickly fix bugs and avoid infinite procrastination.

Version 1.15-unreleased

• fixed bug #15223 (https://gna.org/bugs/?15223): the coverability graph is now not used
in the ‘HOME’ mode

• added a parameter ‘-r’/‘--resultFile’ to write all analysis results into a single file in the
file format of libconfig (see http://www.hyperrealm.com/libconfig)

• fixed bug #12910 and bug #15282 (https://gna.org/bugs/?12910 and
https://gna.org/bugs/?15282): file output for ‘-g’ and ‘-m’ parameter was
broken

• added user configurations for the binaries used by the ProM plugin

• fixed bug #15678 (https://gna.org/bugs/?15678): ‘HOME’ now switches on ‘TWOPHASE’ if
‘STUBBORN’ is also used

Version 1.14

• no statistics output is printed when using directive ‘STATESPACE’

• fixed bug #14295 (see https://gna.org/bugs/?14295): Place is ignored in marking out-
put; isolated places are not removed when using directive ‘STATESPACE’

• whenever a SCC representative is found, all members (excluding the representative) of the
current SCC are now printed out when directive ‘STATESPACE’ is used

Version 1.13

• fixed a small bug in the ‘PREDUCTION’ mode: nets without significant places are now analyzed
instantly

• added new scripts to build binary releases

• a binary release consists of the following pre-configured LoLAs: lola-full, lola-full1, lola-
deadlock, lola-deadlock1, lola-modelchecking, lola-boundednet, lola-liveprop, lola-liveprop1,
lola-statepredicate, and lola-statepredicate1

• changed the way tests are run (using GNU Autotest now)

Version 1.12

• addressed bug #13538 (https://gna.org/bugs/?13538): ‘make install’ installs all bina-
ries with the name ‘lola’ or ‘lola-xxx’ for a standard configuration ‘userconfig.H.xxx’
that are present in the ‘src’ folder. Likewise, ‘make uninstall’ removes all installed bina-
ries with the name ‘lola’ or ‘lola-xxx’ for a standard configuration ‘userconfig.H.xxx’

• adjusted the parser to cope with different line endings (CR, LF, CRLF)

• licensed LoLA under the GNU Affero General Public License (Affero GPL), see file ‘COPYING’

http://catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html
https://gna.org/bugs/?15223
http://www.hyperrealm.com/libconfig
https://gna.org/bugs/?12910
https://gna.org/bugs/?15282
https://gna.org/bugs/?15678
https://gna.org/bugs/?14295
https://gna.org/bugs/?13538
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Version 1.11

• fixed bug #12903 (https://gna.org/bugs/?12903): fixed problems regarding
‘BOUNDEDNET’ mode

• fixed bug #12907 (https://gna.org/bugs/?12907): fixed problems regarding ‘COVER’ op-
tion

• completed documentation

• adapted code to avoid deprecation warnings of GCC 4.2

• updated ‘-h’ output

• removed old manual ‘lola-old.ps’ from documentation

• adapted documentation to fix bug #12090 (https://gna.org/bugs/?12090): syntax de-
scription deviated from implementation

• small changes to the test scripts and the lexer to make LoLA compilable on FreeBSD

• added a directory ‘src/configs’ containing some example configurations for LoLA; for
each file ‘userconfig.H.xxx’ in directory ‘src/configs’ exists a Makefile target ‘lola-xxx’
which compiles LoLA with that configuration

• added Makefile target ‘all-configs’ to compile all configurations in directory
‘src/configs’

• added maintainer scripts to create source and binary releases; the latter contain binaries of
all configurations in directory ‘src/configs’

• added a directory ‘utils’ for small helper tools: graph2dot creates a graphical representation
of a reachability graph created by LoLA (using option ‘-G’ or ‘-M’)

• command line options are now handled by GNU Gengetopt (see
http://www.gnu.org/software/gengetopt)

• added a manpage for LoLA using help2man tool (see http://www.gnu.org/software/help2man)

• added ‘--enable-mpi’ command line parameter for the ‘configure’ script to use MPI com-
piler wrappers instead of GCC (disabled by default)

• added an option MAXIMALSTATES to ‘userconfig.H’: by defining this option to a value, say
100000, LoLA will abort as soon as more than 100000 states are processed; the exit code
will be 5

• canonized LoLA’s error messages

• removed directory ‘patches’: these options (show number of states after capacity excess;
limited state space generation) are now built into LoLA

• added ‘--offspring’ command line parameter that creates a file containing all necessary
information to compile a new binary with the same configuration used for the calling binary.
To compile this new binary, copy the resulting file ‘userconfig.H.offspring’ into the
‘src/configs’ directory of the source distribution and run ‘make lola-offspring’.

Version 1.10

• this is an official source release by Karsten Wolf – removed warning after executing the
configure script

• added a generic Doxygen (http://www.doxygen.org) configuration file ‘Doxyfile.in’

• completed task #6267 (http://gna.org/task/?626): TWOPHASE is only set when it makes
sense, i.e. only in LIVEPROP and HOME

• actually using command line parameters (‘--enable-win32’, ‘--enable-64bit’, and
‘--enable-universal’) from the configure script

https://gna.org/bugs/?12903
https://gna.org/bugs/?12907
https://gna.org/bugs/?12090
http://www.gnu.org/software/gengetopt
http://www.gnu.org/software/help2man
http://www.doxygen.org
http://gna.org/task/?626
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Version 1.03

• fixed bug #12302 (https://gna.org/bugs/?12302): LoLA: Exit Codes in MODELCHECKING:
LoLA now returns the result via the ‘_exit’ command

• added directory ‘patches’ collecting some unpublished adjustments
• fixed bug #12063 (https://gna.org/bugs/?12063): LIVEPROP now works without crash-

ing
• added a test case ‘umlprocess’ to avoid regression of bug #12063

(https://gna.org/bugs/?12063)
• out-commented ‘TWOPHASE’ in ‘userconfig.H’ for liveprop test
• fixed bug #12061 (https://gna.org/bugs/?12061): BOUNDEDNET now works without

crashing
• added a test case ‘unbounded’ to avoid regression of bug #12061

(https://gna.org/bugs/?12061)
• updated the documentation – integrated first parts of http://wwwteo.informatik.uni-rostock.de/ls_

tpp/lola/

• the files ‘ChangeLog’ and ‘NEWS’ are now generated from the file ‘doc/ChangeLog.texi’ as
it is done in Rachel or BPEL2oWFN

• renamed Makefile target ‘cvs-clean’ to ‘svn-clean’
• tidied the configure script and removed unnecessary checks
• set bug reporting address to lola@service-technology.org

• added command line parameters for the ‘configure’ script:
• ‘--disable-assert’ to disable assertions (enabled by default)
• ‘--enable-64bit’ to build for a 64 bit architecture such as x86 64 or ppc64 (disabled

by default)
• ‘--enable-universal’ to build a Mac Universal binary which is executable on Intel

and Power PC platforms (disabled by default)
• ‘--enable-win32’ to build a Windows binary that is independent of a local Cygwin

installation (disabled by default)
• updated documentation – took text from http://wwwteo.informatik.uni-rostock.de/ls_

tpp/lola

Version 1.02

• fixed bug #12089 https://gna.org/bugs/?12089

• added Makefile target ‘win-bin’ that produces a Cygwin independent binary when compil-
ing under Cygwin, helps to avoid bug #12071 http://gna.org/bugs/?12071

• added a testcase ‘choreography’ from a BPEL4Chor choreography using symmetries (see
file ‘tests/nets/choreography.tar.gz’ on how to create this file with BPEL2oWFN)

• fixed bug #12097 https://gna.org/bugs/?12097

• fixed bug #12109 https://gna.org/bugs/?12109

Version 1.01

• fixed bug #12062 http://gna.org/bugs/?12062

• added Makefile target ‘cvs-clean’ that removes all files that can be rebuilt by ‘autoreconf
-iv’

• the information gathered by the configure script is now collected in a header file
‘src/config.H’

https://gna.org/bugs/?12302
https://gna.org/bugs/?12063
https://gna.org/bugs/?12063
https://gna.org/bugs/?12061
https://gna.org/bugs/?12061
http://wwwteo.informatik.uni-rostock.de/ls_tpp/lola/
http://wwwteo.informatik.uni-rostock.de/ls_tpp/lola/
mailto:lola@service-technology.org
http://wwwteo.informatik.uni-rostock.de/ls_tpp/lola
http://wwwteo.informatik.uni-rostock.de/ls_tpp/lola
https://gna.org/bugs/?12089
http://gna.org/bugs/?12071
https://gna.org/bugs/?12097
https://gna.org/bugs/?12109
http://gna.org/bugs/?12062
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• tidied Makefiles
• added a testsuite (invoked by Makefile target ‘check’) consisting of:
• the Dining Philosophers
• the Echo Algorithm (currently not used)
• a business process translated from a UML specification
• an AI planning problem

• added the documentation from http://www.informatik.hu-berlin.de/~kschmidt/doku.ps

• added a (undocumented) command line parameter ‘--bug’ for debug purposes

Version 1.00

• code of a version of Karsten Wolf that has not been officially released; this version is not a
completely tested version and is only intended for internal purposes

• minor adjustments (only affecting the frontend) to use the GNU Autotools

The most recent change log is available at LoLA’s website at
http://service-technology.org/files/lola/ChangeLog.

http://www.informatik.hu-berlin.de/~kschmidt/doku.ps
http://service-technology.org/files/lola/ChangeLog
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